Abstract

A new theoretical model of vapor quality in subcooled flow boiling is proposed based on energy balance and well-known heat transfer correlations. This model takes into account the enhancement of forced convection heat transfer due to the presence of vapor. It is shown that the vapor quality predicted by our model is much less than that by a previous model for low pressure. This result demonstrates that the convective heat transfer coefficient (HTC) cannot be constant, and the effect of gas phase on forced convection heat transfer cannot be neglected even for subcooled flow boiling, particularly at low pressures. However, the difference between the present and previous models decreases as the pressure increases because (i) the increase of the convective heat transfer coefficient is weakened, and (ii) boiling heat transfer becomes dominant. The difference becomes large if the mass flux is increased or the wall heat flux is decreased, owing to the difference in the form of the convective heat flux. Furthermore, the present model has the capability of locating the point at which bulk boiling commences. In general, this saturation point moves downstream as the wall heat flux and pressure increase, and upstream as the mass flux and tube diameter increase. In addition, the present model can be simplified to a one-variable model, which is a good approximation of the original one especially for low pressures and wall heat flux and high mass flux.

References

1.
Sakamoto
,
Y.
,
Kobayashi
,
H.
,
Naruo
,
Y.
,
Takesaki
,
Y.
,
Nakajima
,
Y.
,
Furuichi
,
A.
,
Tsujimura
,
H.
,
Kabayama
,
K.
, and
Sato
,
T.
,
2019
, “
Investigation of the Void Fraction-Quality Correlations for Two-Phase Hydrogen Flow Based on the Capacitive Void Fraction Measurement
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18483
18495
.10.1016/j.ijhydene.2019.05.066
2.
Cai
,
C.
,
Mudawar
,
I.
,
Liu
,
H.
, and
Xi
,
X.
,
2021
, “
Assessment of Void Fraction Models and Correlations for Subcooled Boiling in Vertical Upflow in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
171
, p.
121060
.10.1016/j.ijheatmasstransfer.2021.121060
3.
Ahmad
,
S. Y.
,
1970
, “
Axial Distribution of Bulk Temperature and Void Fraction in a Heated Channel With Inlet Subcooling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
92
(
4
), pp.
595
609
.10.1115/1.3449729
4.
Sekoguchi
,
K.
,
Tanaka
,
O.
,
Esaki
,
S.
, and
Imasaka
,
T.
,
1980
, “
Prediction of Void Fraction in Subcooled and Low Quality Boiling Regions
,”
Bull. JSME
,
23
(
183
), pp.
1475
1482
.10.1299/jsme1958.23.1475
5.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
6.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
7.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.10.1016/0017-9310(91)90234-6
8.
Paz
,
M. C.
,
Conde
,
M.
,
Suárez
,
E.
, and
Concheiro
,
M.
,
2015
, “
On the Effect of Surface Roughness and Material on the Subcooled Flow Boiling of Water: Experimental Study and Global Correlation
,”
Exp. Therm. Fluid Sci.
,
64
, pp.
114
124
.10.1016/j.expthermflusci.2015.02.016
9.
Yan
,
J.
,
Bi
,
Q.
,
Cai
,
L.
,
Zhu
,
G.
, and
Yuan
,
Q.
,
2015
, “
Subcooled Flow Boiling Heat Transfer of Water in Circular Tubes With Twisted-Tape Inserts Under High Heat Fluxes
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
11
21
.10.1016/j.expthermflusci.2015.04.003
10.
Yan
,
J.
,
Bi
,
Q.
,
Liu
,
Z.
,
Zhu
,
G.
, and
Cai
,
L.
,
2015
, “
Subcooled Flow Boiling Heat Transfer of Water in a Circular Tube Under High Heat Fluxes and High Mass Fluxes
,”
Fusion Eng. Des
,
100
, pp.
406
418
.10.1016/j.fusengdes.2015.07.007
11.
Okawa
,
T.
,
2021
, “
On the Mechanism of Onset of Significant Void in Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
181
, p.
121835
.10.1016/j.ijheatmasstransfer.2021.121835
12.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Olmeda
,
P.
, and
Cornejo
,
O.
,
2014
, “
Experiments on Subcooled Flow Boiling in i.c. engine-Like Conditions at Low Flow Velocities
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
347
354
.10.1016/j.expthermflusci.2013.10.004
13.
Dashtban
,
M.
,
Peyghambarzadeh
,
S. M.
,
Alavi Fazel
,
S. A.
, and
Azizi
,
S.
,
2023
, “
Mathematical Modeling and Experimental Validation of Heat Transfer During Upward Subcooled Flow Boiling in a Vertical Annulus
,”
J. Therm. Anal. Calorim.
,
148
(
23
), pp.
13519
13541
.10.1007/s10973-023-12657-5
14.
Collado
,
F. J.
,
Monné
,
C.
, and
Pascau
,
A.
,
2007
, “
A New Heat Balance for Flow Boiling
,”
AIChE J.
,
53
(
8
), pp.
2123
2130
.10.1002/aic.11231
15.
Collado
,
F. J.
,
Monné
,
C.
, and
Pascau
,
A.
,
2006
, “
Changes of Enthalpy Slope in Subcooled Flow Boiling
,”
Heat Mass Transfer
,
42
(
5
), pp.
437
448
.10.1007/s00231-005-0653-6
16.
Collado
,
F. J.
,
Monné
,
C.
,
Pascau
,
A.
,
Fuster
,
D.
, and
Medrano
,
A.
,
2006
, “
Thermodynamics of Void Fraction in Saturated Flow Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
6
), pp.
611
615
.10.1115/1.2190696
17.
Collado
,
F. J.
,
2022
, “
Void Fraction Thermo-Kinematics for Subcooled Flow Boiling
,”
Phys. Fluids
,
34
(
12
), p.
123302
.10.1063/5.0120149
18.
Clark
,
J. A.
, and
Rohsenow
,
W. M.
,
1954
, “
Local Boiling Heat Transfer to Water at Low Reynolds Numbers and High Pressures
,”
Trans. ASME
,
76
(
4
), pp.
553
561
.10.1115/1.4014895
19.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
367
.
20.
Saha
,
P.
, and
Zuber
,
N.
,
1974
, “
Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling
,”
Int. Heat Transfer Conf. Digital Libr.
,
5
, pp.
175
179
.10.1615/IHTC5.430
21.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
(
6
), pp.
969
975
.10.1115/1.4015984
22.
Aicher
,
T.
, and
Martin
,
H.
,
1997
, “
New Correlations for Mixed Turbulent Natural and Forced Convection Heat Transfer in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3617
3626
.10.1016/S0017-9310(97)00026-4
23.
International Association for the Properties of Water and Steam
, 2012, “Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,” IAPWS R7-97, accessed Aug. 28, 2024, https://www.iapws.org/relguide/IF97-Rev.pdf
24.
International Association for the Properties of Water and Steam, 2014, “Revised Release on Surface Tension of Ordinary Water Substance,” IAPWS R1-76, accessed Aug. 28, 2024, https://iapws.org/relguide/Surf-H2O-2014.pdf
You do not currently have access to this content.