Abstract

This work reports a numerical study on mixed convection flows around a swirling spherical shaped open vessel in air within the laminar regime. This investigation is quite important and relevant in various industrial operations like centrifugal casting, formation of shield surfaces, thermal processing of different food stuffs, etc. This study aims to characterize the fluid flow and heat transfer behavior from both inner and outer surfaces of the open cavity. Governing differential equations, such as continuity, momentum, and energy are solved by using finite volume technique to describe the effect of relevant pertinent parameters over wide range: Rayleigh number (103Ra107), height to diameter ratio (0.15h/D0.95), and Reynolds number (0ReD300). It is observed that the plume is deformed greatly by swirling effect at higher ReD and lower Ra for a fixed h/D. The percentage of increase of heat transfer rate from ReD=0 to ReD 0 is significantly higher at lower Ra for all cases of h/D. Lastly, a suitable correlation for average Nusselt number is proposed as a function of Ra, h/D, and ReD, which shows a satisfactory agreement with numerical data. This correlation is expected to be helpful for academic and industrial purposes.

References

1.
Liu
,
H.
,
Todreas
,
N. E.
, and
Driscoll
,
M. J.
,
2000
, “
An Experimental Investigation of a Passive Cooling Unit for Nuclear Plant Containment
,”
Nucl. Eng. Des.
,
199
(
3
), pp.
243
255
.10.1016/S0029-5493(00)00229-6
2.
Dimmick
,
G. R.
,
Chatoorgoon
,
V.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2002
, “
Natural-Convection Studies for Advanced CANDU Reactor Concepts
,”
Nucl. Eng. Des.
,
215
(
1–2
), pp.
27
38
.10.1016/S0029-5493(02)00039-0
3.
Zhang
,
T.
, and
Yang
,
H.
,
2019
, “
Flow and Heat Transfer Characteristics of Natural Convection in Vertical Air Channels of Double-Skin Solar Façades
,”
Appl. Energy
,
242
, pp.
107
120
.10.1016/j.apenergy.2019.03.072
4.
Incropera
,
F. P.
,
1988
, “
Convection Heat Transfer in Electronic Equipment Cooling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
110
(
4b
), pp.
1097
1111
.10.1115/1.3250613
5.
Remsburg
,
R.
,
1998
,
Advanced Thermal Design of Electronic Equipment
,
Chapman & Hall, New York
, pp.
241
395
.
6.
Papanicolaou
,
E.
, and
Gopalakrishna
,
S.
,
1995
, “
Natural Convection in Shallow, Horizontal Air Layers Encountered in Electronic Cooling
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
307
316
.10.1115/1.2792110
7.
Jia
,
H.
, and
Gogos
,
G.
,
1996
, “
Laminar Natural Convection Heat Transfer From Isothermal Spheres
,”
Int. J. Heat Mass Transfer
,
39
(
8
), pp.
1603
1615
.10.1016/0017-9310(95)00259-6
8.
Prhashanna
,
A.
, and
Chhabra
,
R. P.
,
2010
, “
Free Convection in Power-Law Fluids From a Heated Sphere
,”
Chem. Eng. Sci.
,
65
(
23
), pp.
6190
6205
.10.1016/j.ces.2010.09.003
9.
Bruneau
,
C. H.
,
Fischer
,
P.
,
Xiong
,
Y. L.
, and
Kellay
,
H.
,
Cyclobulle Collaboration,
2018
, “
Numerical Simulations of Thermal Convection on a Hemisphere
,”
Phys. Rev. Fluids
,
3
(
4
), p.
043502
.10.1103/PhysRevFluids.3.043502
10.
Liu
,
J.
,
Zhao
,
C. J.
,
Liu
,
H.
, and
Lu
,
W. Q.
,
2018
, “
Numerical Study of Laminar Natural Convection Heat Transfer From a Hemisphere With Adiabatic Plane and Isothermal Hemispherical Surface
,”
Int. J. Therm. Sci.
,
131
, pp.
132
143
.10.1016/j.ijthermalsci.2018.05.013
11.
Behera
,
S.
,
Acharya
,
S.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Heat Transfer From Linearly, Circularly and Parabolically Bent Plates: A Study of Shape Effect
,”
Int. J. Therm. Sci.
,
150
, p.
106219
.10.1016/j.ijthermalsci.2019.106219
12.
Nasr
,
K. B.
,
Chouikh
,
R.
,
Kerkeni
,
C.
, and
Guizani
,
A.
,
2006
, “
Numerical Study of the Natural Convection in Cavity Heated From the Lower Corner and Cooled From the Ceiling
,”
Appl. Therm. Eng.
,
26
(
7
), pp.
772
775
.10.1016/j.applthermaleng.2005.09.011
13.
Rana
,
B. K.
,
2022
, “
Conjugate Steady Natural Convection Analysis Around Thick Tapered Vertical Pipe Suspended in the Air
,”
Sādhanā
,
47
(
1
), pp.
1
16
.
14.
Rana
,
B. K.
,
2022
, “
Numerical Investigation on Free Convection From an Isothermally Heated Hollow Inclined Cylinder Suspended in Air
,”
Numer. Heat Transfer, Part A
, pp.
1
25
.10.1080/10407782.2022.2102398
15.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
16.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
755
772
.10.1016/0017-9310(84)90145-5
17.
Papanicolaou
,
E.
, and
Jaluria
,
Y.
,
1995
, “
Computation of Turbulent Flow in Mixed Convection in a Cavity With a Localized Heat Source
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
3
), pp.
649
658
.10.1115/1.2822626
18.
Yang
,
O.
,
2000
, “
Mixed Convection in Cavities With a Locally Heated Lower Wall and Moving Sidewalls
,”
Numer. Heat Transfer, Part A
,
37
(
7
), pp.
695
710
.10.1080/104077800274037
19.
Khubeiz
,
J. M.
,
Radziemska
,
E.
, and
Lewandowski
,
W. M.
,
2002
, “
Natural Convective Heat-Transfers From an Isothermal Horizontal Hemispherical Cavity
,”
Appl. Energy
,
73
(
3–4
), pp.
261
275
.10.1016/S0306-2619(02)00079-X
20.
Prakash
,
M.
,
Kedare
,
S. B.
, and
Nayak
,
J. K.
,
2012
, “
Numerical Study of Natural Convection Loss From Open Cavities
,”
Int. J. Therm. Sci.
,
51
, pp.
23
30
.10.1016/j.ijthermalsci.2011.08.012
21.
Singh
,
P. J.
, and
Roy
,
S.
,
2008
, “
Mixed Convection Along a Rotating Vertical Slender Cylinder in an Axial Flow
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
717
723
.10.1016/j.ijheatmasstransfer.2007.04.053
22.
Baïri
,
A.
, and
Öztop
,
H. F.
,
2014
, “
On Thermal Control of Devices Contained in Inclined Hemispherical Cavities With Dome Oriented Downwards and Subjected to Transient Natural Convection
,”
Int. Commun. Heat Mass Transfer
,
55
, pp.
109
112
.10.1016/j.icheatmasstransfer.2014.04.001
23.
Baïri
,
A.
, and
de María
,
J. G.
,
2013
, “
Numerical and Experimental Study of Steady State Free Convection Generated by Constant Heat Flux in Tilted Hemispherical Cavities
,”
Int. J. Heat Mass Transfer
,
66
, pp.
355
365
.10.1016/j.ijheatmasstransfer.2013.07.038
24.
Baïri
,
A.
,
Monier-Vinard
,
E.
,
Laraqi
,
N.
,
Baïri
,
I.
,
Nguyen
,
M. N.
, and
Dia
,
C. T.
,
2014
, “
Natural Convection in Inclined Hemispherical Cavities With Isothermal Disk and Dome Faced Downwards. Experimental and Numerical Study
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1340
1347
.10.1016/j.applthermaleng.2014.09.012
25.
Baïri
,
A.
,
2014
, “
Quantification of Natural Convective Heat Transfer Within Air-Filled Hemispherical Cavities. Isothermal Tilted Disk With Dome Oriented Upwards and Wide Ra Range
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
291
296
.10.1016/j.icheatmasstransfer.2014.07.009
26.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Experimental and Numerical Study on the Onset of Natural Convection in a Cavity Open at the Top
,”
Phys. Fluids
,
30
(
5
), p.
057102
.10.1063/1.5025092
27.
Saxena
,
A.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Flow and Heat Transfer Characteristics of an Open Cubic Cavity With Different Inclinations
,”
Phys. Fluids
,
30
(
8
), p.
087101
.10.1063/1.5040698
28.
Nalluri
,
S. V.
,
Patel
,
S. A.
, and
Chhabra
,
R. P.
,
2015
, “
Mixed Convection From a Hemisphere in Bingham Plastic Fluids
,”
Int. J. Heat Mass Transfer
,
84
, pp.
304
318
.10.1016/j.ijheatmasstransfer.2014.12.059
29.
Zhang
,
J.
,
Liu
,
J.
, and
Lu
,
W.
,
2019
, “
Study on Laminar Natural Convection Heat Transfer From a Hemisphere With Uniform Heat Flux Surface
,”
J. Therm. Sci.
,
28
(
2
), pp.
232
245
.10.1007/s11630-018-1051-y
30.
Rana
,
B. K.
,
Singh
,
B.
, and
Senapati
,
J. R.
,
2021
, “
Thermofluid Characteristics on Natural and Mixed Convection Heat Transfer From a Vertical Rotating Hollow Cylinder Immersed in Air: A Numerical Exercise
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
022601
.10.1115/1.4048830
31.
Rana
,
B. K.
, and
Senapati
,
J. R.
,
2021
, “
Entropy Generation Analysis and Cooling Time Estimation for a Rotating Vertical Hollow Tube in the Air Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
4
), p.
042101
.10.1115/1.4049839
32.
Behera
,
B. R.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Free Convection Heat Transfer From a Concave Hemispherical Surface: A Numerical Exercise
,”
Int. Commun. Heat Mass Transfer
,
125
, p.
105324
.10.1016/j.icheatmasstransfer.2021.105324
33.
Vakacharla
,
B. K.
, and
Rana
,
B. K.
,
2022
, “
Free Convection Heat Transfer From a Spherical Shaped Open Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
9
), p.
092601
.10.1115/1.4054773
34.
Ullah
,
I.
,
Jan
,
R. U.
,
Khan
,
H.
, and
Alam
,
M. M.
,
2022
, “
Improving the Thermal Performance of (ZnO-Ni/H2O) Hybrid Nanofluid Flow Over a Rotating System: The Applications of Darcy Forchheimer Theory
,”
Waves Random Complex Media
, pp.
1
17
.
35.
Ullah
,
I.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2022
, “
Optimization of Entropy Production in Flow of Hybrid Nanomaterials Through Darcy-Forchheimer Porous Space
,”
J. Therm. Anal. Calorim.
,
147
(
10
), pp.
5855
5864
.10.1007/s10973-021-10830-2
36.
Ullah
,
I.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Asghar
,
S.
,
2019
, “
Dissipative Flow of Hybrid Nanoliquid (H2O-Aluminum Alloy Nanoparticles) With Thermal Radiation
,”
Phys. Scr.
,
94
(
12
), p.
125708
.10.1088/1402-4896/ab31d3
37.
Ullah
,
I.
,
2022
, “
Heat Transfer Enhancement in Marangoni Convection and Nonlinear Radiative Flow of Gasoline Oil Conveying Boehmite Alumina and Aluminum Alloy Nanoparticles
,”
Int. Commun. Heat Mass Transfer
,
132
, p.
105920
.10.1016/j.icheatmasstransfer.2022.105920
38.
Ullah
,
I.
,
Shah
,
S. I.
,
Alam
,
M. M.
,
Sultana
,
N.
, and
Pasha
,
A. A.
,
2022
, “
Thermodynamic of Ion-Slip and Magnetized Peristalsis Channel Flow of PTT Fluid by Considering Lorentz Force and Joule Heating
,”
Int. Commun. Heat Mass Transfer
,
136
, p.
106163
.10.1016/j.icheatmasstransfer.2022.106163
39.
Ullah
,
I.
,
Hayat
,
T.
,
Aziz
,
A.
, and
Alsaedi
,
A.
,
2022
, “
Significance of Entropy Generation and the Coriolis Force on the Three-Dimensional non-Darcy Flow of Ethylene-Glycol Conveying Carbon Nanotubes (SWCNTs and MWCNTs)
,”
J. Non-Equilib. Thermodyn.
,
47
(
1
), pp.
61
75
.10.1515/jnet-2021-0012
40.
Ullah
,
I.
,
Alghamdi
,
M.
,
Xia
,
W. F.
,
Shah
,
S. I.
, and
Khan
,
H.
,
2021
, “
Activation Energy Effect on the Magnetized-Nanofluid Flow in a Rotating System Considering the Exponential Heat Source
,”
Int. Commun. Heat Mass Transfer
,
128
, p.
105578
.10.1016/j.icheatmasstransfer.2021.105578
41.
Ullah
,
I.
,
Ullah
,
R.
,
Alqarni
,
M. S.
,
Xia
,
W. F.
, and
Muhammad
,
T.
,
2021
, “
Combined Heat Source and Zero Mass Flux Features on Magnetized Nanofluid Flow by Radial Disk With the Applications of Coriolis Force and Activation Energy
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105416
.10.1016/j.icheatmasstransfer.2021.105416
42.
Li
,
Y. M.
,
Ullah
,
I.
,
Alam
,
M. M.
,
Khan
,
H.
, and
Aziz
,
A.
,
2022
, “
Lorentz Force and Darcy-Forchheimer Effects on the Convective Flow of non-Newtonian Fluid With Chemical Aspects
,”
Waves Random Complex Media
, pp.
1
15
.
43.
Ullah
,
I.
,
2022
, “
Activation Energy With Exothermic/Endothermic Reaction and Coriolis Force Effects on Magnetized Nanomaterials Flow Through Darcy–Forchheimer Porous Space With Variable Features
,”
Waves Random Complex Media
, pp.
1
14
.
44.
Li
,
Y. M.
,
Ullah
,
I.
,
Ameer Ahammad
,
N.
,
Ullah
,
I.
,
Muhammad
,
T.
, and
Asiri
,
S. A.
,
2022
, “
Approximation of Unsteady Squeezing Flow Through Porous Space With Slip Effect: DJM Approach
,”
Waves Random Complex Media
, pp.
1
15
.
45.
Hayat
,
T.
,
Ullah
,
I.
,
Alsaedi
,
A.
, and
Momani
,
S.
,
2021
, “
Entropy Optimization in Nonlinear Mixed Convective Flow of Nanomaterials Through Porous Space
,”
J. Non-Equilib. Thermodyn.
,
46
(
2
), pp.
191
203
.10.1515/jnet-2019-0048
You do not currently have access to this content.