Abstract

This paper investigates numerically and experimentally the flow structure and convective heat transfers in an unconfined air gap of a discoid technology rotor–stator system. The cavity between the interdisk is defined by dimensionless spacing varying between G = 0.02 (Haidar et al., 2020, “Numerical and Experimental Study of Flow and Convective Heat Transfer on a Rotor of a Discoidal Machine With Eccentric Impinging Jet,” J. Therm. Sci. Eng. Appl., 12(2), 021012) and G = 0.16. For experimental data, an infrared thermography is applied to obtain a measurement of the rotor surface temperatures and a steady-state energy equation is solved to evaluate the local convective coefficients. A numerical study is performed with a computational code ansys-fluent and based to apply two different turbulence models named the Reynolds stress model (RSM) and k–ε renormalization group (RNG). The results of the numerical simulation are compared with experimental results on heat transfer for the rotational Reynolds number ranging from 2.38×105 to 5.44×105, the jet Reynolds numbers varying from 16.6×103 to 49.6×103, and for dimensionless spacing G between 0.04 and 0.16. Three heat transfer zones on the rotating disk surface are identified. A good accord between a numerical result and experimental data was obtained. Finally, a correlation relating the Nusselt number to the rotational Reynolds number, jet Reynolds number, and dimensionless spacing varying from 0.02 to 0.16 is proposed.

References

1.
Goldstein
,
S.
,
1935
, “
On the Resistance to the Rotation of a Disc Immersed in a Fluid
,”
Proc. Cambridge Philos. Soc.
,
31
(
2
), pp.
232
241
.10.1017/S0305004100013323
2.
Dorfman
,
L. A.
,
1963
,
Hydrodynamic Resistance and Heat Loss of Rotating Solids
,
Oliver and Boyd
,
Edinburgh, UK
.
3.
Huang
,
L.
, and
El-Genk
,
M. S.
,
1998
, “
Heat Transfer and Flow Visualization Experiments of Swirling, Multi-Channel, and Conventional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
41
(
3
), pp.
583
600
.10.1016/S0017-9310(97)00123-3
4.
Fénot
,
M.
,
Vullierme
,
J.-J.
, and
Dorignac
,
E.
,
2005
, “
Local Heat Transfer Due to Several Configurations of Circular Air Jets Impinging on a Flat Plate With and Without Semi-Confinement
,”
Int. J. Therm. Sci
,
44
(
7
), pp.
665
675
.10.1016/j.ijthermalsci.2004.12.002
5.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
6.
Chen
,
Y.-M.
,
Lee
,
W.-T.
, and
Wu
,
S.-J.
,
1998
, “
Heat (Mass) Transfer Between an Impinging Jet and a Rotating Disk
,”
Heat Mass Transfer
,
34
(
2–3
), pp.
195
201
.10.1007/s002310050249
7.
Haidar
,
C.
,
Boutarfa
,
R.
,
Sennoune
,
M.
, and
Harmand
,
S.
,
2020
, “
Numerical and Experimental Study of Flow and Convective Heat Transfer on a Rotor of a Discoidal Machine With Eccentric Impinging Jet
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021012
.10.1115/1.4044207
8.
Kármán
,
T. V.
,
1921
, “
Über Laminare Und Turbulente Reibung
,”
ZAMM‐J. Appl. Math. Mech. Angew. Math. und Mech.
,
1
(
4
), pp.
233
252
.10.1002/zamm.19210010401
9.
Popiel
,
C.
, and
Bogusławski
,
L.
,
1975
, “
Local Heat Transfer Coefficients on the Rotating Disk in Still Air
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
167
170
.10.1016/0017-9310(75)90020-4
10.
Soo
,
S. L.
,
1958
, “
Laminar Flow Over an Enclosed Rotating Disk
,”
ASME J. Fluid Eng.
,
80
(
2
), pp.
287
294
.10.1115/1.4012346
11.
Boutarfa
,
R.
, and
Harmand
,
S.
,
2005
, “
Local Convective Heat Transfer for Laminar and Turbulent Flow in a Rotor-Stator System
,”
Exp. Fluids
,
38
(
2
), pp.
209
221
.10.1007/s00348-004-0900-5
12.
Batchelor
,
G. K.
,
1951
, “
Note on a Class of Solutions of the Navier-Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
,
4
(
1
), pp.
29
41
.10.1093/qjmam/4.1.29
13.
Stewartson
,
K.
,
1953
, “
On the Flow Between Two Rotating Coaxial Disks
,”
Math. Proc. Cambridge Philos. Soc.
,
49
(
2
), pp.
333
341
.10.1017/S0305004100028437
14.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
15.
Şara
,
O. N.
,
Erkmen
,
J.
,
Yapici
,
S.
, and
Çopur
,
M.
,
2008
, “
Electrochemical Mass Transfer Between an Impinging Jet and a Rotating Disk in a Confined System
,”
Int. Commun. Heat Mass Transfer
,
35
(
3
), pp.
289
298
.10.1016/j.icheatmasstransfer.2007.07.004
16.
Pellé
,
J.
, and
Harmand
,
S.
,
2009
, “
Heat Transfer Study in a Rotor–Stator System Air-Gap With an Axial Inflow
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1532
1543
.10.1016/j.applthermaleng.2008.07.014
17.
Poncet
,
S.
,
Nguyen
,
T. D.
,
Harmand
,
S.
,
Pellé
,
J.
,
Da Soghe
,
R.
,
Bianchini
,
C.
, and
Viazzo
,
S.
,
2013
, “
Turbulent Impinging Jet Flow Into an Unshrouded Rotor–Stator System: Hydrodynamics and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
44
, pp.
719
734
.10.1016/j.ijheatfluidflow.2013.10.001
18.
Nguyen
,
T. D.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Poncet
,
S.
,
2012
, “
PIV Measurements of an Air Jet Impinging on an Open Rotor-Stator System
,”
Exp. Fluids
,
53
(
2
), pp.
401
412
.10.1007/s00348-012-1298-0
19.
Ritoux
,
G.
,
1982
, “
Evaluation numérique Des Facteurs de Forme
,”
Rev. Phys. Appl.
,
17
(
8
), pp.
503
515
.10.1051/rphysap:01982001708050300
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, Vol.
58
,
Hemisphere Publishing Corporation
,
New York
.
21.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
22.
Patankar
,
S.
,
1980
,
Numerical heat Transfer and Fluid Flow
,
CRC Press
, Bova Raton, FL.
23.
Schiestel
,
R.
,
1998
,
Les écoulements Turbulents: Modélisation et Simulation
,
Hermes
.
24.
Gatski
,
T. B.
,
Hussaini
,
M. Y.
, and
Lumley
,
J. L.
,
1996
,
Simulation and Modeling of Turbulent Flows
,
Oxford University Press
, Oxford, UK.
25.
Launder
,
B. E.
, and
Tselepidakis
,
D. P.
,
1994
, “
Application of a New Second-Moment Closure to Turbulent Channel Flow Rotating in Orthogonal Mode
,”
Int. J. Heat Fluid Flow
,
15
(
1
), pp.
2
10
.10.1016/0142-727X(94)90025-6
26.
Elena
,
L.
, and
Schiestel
,
R.
,
1996
, “
Turbulence Modeling of Rotating Confined Flows
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
283
289
.10.1016/0142-727X(96)00032-X
27.
Cambon
,
C.
,
Jacquin
,
L.
, and
Lubrano
,
J. L.
,
1992
, “
Toward a New Reynolds Stress Model for Rotating Turbulent Flows
,”
Phys. Fluids A
,
4
(
4
), pp.
812
824
.10.1063/1.858298
28.
Poncet
,
S.
, and
Schiestel
,
R.
,
2007
, “
Numerical Modeling of Heat Transfer and Fluid Flow in Rotor–Stator Cavities With Throughflow
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1528
1544
.10.1016/j.ijheatmasstransfer.2006.08.028
29.
Poncet
,
S.
,
Haddadi
,
S.
, and
Viazzo
,
S.
,
2011
, “
Numerical Modeling of Fluid Flow and Heat Transfer in a Narrow Taylor–Couette–Poiseuille System
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
128
144
.10.1016/j.ijheatfluidflow.2010.08.003
You do not currently have access to this content.