Abstract

An experiment was carried out on a bayonet tube that was kept at a constant temperature using condensing steam. In contrast, cold water was permitted to enter the central tube and discharge via an annular portion. The water flow rate was varied, covering laminar, transition, and turbulent regimes. The inner part of the bayonet tube is CPVC (chlorinated polyvinyl chloride, k = 0.136 W · m−1 · K−1), which reduces short-circuit heat transfer across the tube. Temperatures were recorded at different points in the tube. From the results of experiments on total heat transfer and short-circuit heat transfer, the Nusselt number can be calculated. The pressure drop across a bayonet tube determined the friction factor. In examining a range of Reynolds numbers, Effectiveness and figure of merit have been resolved. It has been observed that as the Reynolds number increases, the Nusselt number increases while the friction factor decreases. Both Effectiveness and Figure of Merit decrease with the addition of the Reynolds number, and it is observed that the maximum effective value is 0.86 for a 75 Reynolds number, which is suitable for bayonet solar collectors, and the minimum effective value is 0.2 for an 8062 Reynolds number, which is suitable for bayonet heat exchangers. It serves as reference work for bayonet tubes for designing a parabolic solar collector and heat exchanger.

References

1.
Bagheri
,
E.
,
Wang
,
B.-C.
, and
Yang
,
Z.
,
2020a
, “
Influence of Domain Size on Direct Numerical Simulation of Turbulent Flow in a Moderately Curved Concentric Annular Pipe
,”
Phys. Fluids
,
32
(
6
), p.
065105
.10.1063/5.0003436
2.
Hattori
,
H.
,
Wada
,
A.
,
Yamamoto
,
M.
,
Yokoo
,
H.
,
Yasunaga
,
K.
,
Kanda
,
T.
, and
Hattori
,
K.
,
2022
, “
Experimental Study of Laminar-to-Turbulent Transition in Pipe Flow
,”
Phys. Fluids
,
34
(
3
), p.
034115
.10.1063/5.0082624
3.
Rodríguez-Sánchez
,
M. R.
,
Sánchez-González
,
A.
,
Marugán-Cruz
,
C.
, and
Santana
,
D.
,
2014
, “
New Designs of Molten-Salt Tubular-Receiver for Solar Power Tower
,”
Energy Procedia
,
49
(
January
), pp.
504
513
.10.1016/j.egypro.2014.03.054
4.
Boni
,
F.
,
2009
, “
The Design of a Liquid Metal Heated Bayonet Tube Steam Generator
,”
J. Am. Soc. Nav. Eng.
,
70
(
2
), pp.
231
244
.10.1111/j.1559-3584.1958.tb05884.x
5.
Almanza-Huerta
,
L.
,
Hernandez-Guerrero
,
A.
,
Krarti
,
M.
, and
Luna
,
J. M.
,
2010
, “
Parametric Analysis of a Bayonet Tube With a Special Type of Extended Surface
,”
ASME
Paper No.IMECE2010-38680.10.1115/IMECE2010-38680
6.
Jolly
,
A. J.
,
O'Doherty
,
T.
, and
Bates
,
C. J.
,
1999
, “
COHEX: A Computer Model for Solving the Thermal Energy Exchange in an Ultra High Temperature Heat Exchanger. Part B: Validation Results
,”
Appl. Therm. Eng.
,
19
(
4
), pp.
389
398
.10.1016/S1359-4311(98)00060-X
7.
Vitel
,
M.
,
Rouabhi
,
A.
,
Tijani
,
M.
, and
Guérin
,
F.
,
2015
, “
Modeling Heat Transfer Between a Freeze Pipe and the Surrounding Ground During Artificial Ground Freezing Activities
,”
Comput. Geotech.
,
63
(
January
), pp.
99
111
.10.1016/j.compgeo.2014.08.004
8.
Jahan
,
C. S.
,
Quamruzzaman
,
C.
,
Mazumder
,
Q. H.
, and
Haque
,
T. A.
,
2004
, “
Artificial Ground Freezing Methodfor Shaft Constructionin Maddhapara Hardrock Mine, Bangladesh: Minimizationofits Cost
,”
Biol. Sci.-PJSIR
,
47
(
2
), pp.
112
117
.http://www.v2.pjsir.org/index.php/biologicalsciences/article/view/1477
9.
Pimentel
,
E.
,
Papakonstantinou
,
S.
, and
Anagnostou
,
G.
,
2012
, “
Numerical Interpretation of Temperature Distributions From Three Ground Freezing Applications in Urban Tunnelling
,”
Tunnelling Underground Space Technol.
,
28
(
1
), pp.
57
69
.10.1016/j.tust.2011.09.005
10.
Zheng
,
G.
,
Zhang
,
T.
, and
Diao
,
Y.
,
2015
, “
Mechanism and Countermeasures of Preceding Tunnel Distortion Induced by Succeeding EPBS Tunnelling in Close Proximity
,”
Comput. Geotechnics
,
66
(
May
), pp.
53
65
.10.1016/j.compgeo.2015.01.008
11.
Damiani
,
L.
,
Montecucco
,
M.
, and
Prato
,
A. P.
,
2013
, “
Conceptual Design of a Bayonet-Tube Steam Generator for the ALFRED Lead-Cooled Reactor
,”
Nucl. Eng. Des.
,
265
(
December
), pp.
154
163
.10.1016/j.nucengdes.2013.06.021
12.
Damiani
,
L.
,
Prato
,
A. P.
, and
Revetria
,
R.
,
2014
, “
Innovative Steam Generation System for the Secondary Loop of “ALFRED” Lead-Cooled Fast Reactor Demonstrator
,”
Appl. Energy
,
121
, pp.
207
218
.10.1016/j.apenergy.2014.02.014
13.
Belloni
,
F.
,
Bandini
,
G.
, and
Polidori
,
M.
,
2011
, “
Investigation on the heat exchange efficiency of bayonet tube steam generator of lead-cooled ALFRED reactor With RELAP5 code
,” ICAPP 2011: Performance and Flexibility-The Power of Innovation, Nice, France, May 2–5, No. INIS-FR-13-0283
.
14.
Ponciroli
,
R.
,
Bigoni
,
A.
,
Cammi
,
A.
,
Lorenzi
,
S.
, and
Luzzi
,
L.
,
2014
, “
Object-Oriented Modelling and Simulation for the ALFRED Dynamics
,”
Prog. Nucl. Energy
,
71
(
March
), pp.
15
29
.10.1016/j.pnucene.2013.10.013
15.
Mizushima
,
J.
, and
Hayashi
,
S.
,
2001
, “
Exchange of Instability Modes for Natural Convection in a Narrow Horizontal Annulus
,”
Phys. Fluids
,
13
(
1
), pp.
99
106
.10.1063/1.1329649
16.
Santis
,
A. D.
,
Vitale Di Maio
,
D.
,
Caruso
,
G.
, and
Manni
,
F.
,
2013
, “
Innovative Radiation-Based Direct Heat Exchanger (DHX) for Liquid Metal Cooled Reactors
,”
Nucl. Eng. Des.
,
263
(
October
), pp.
164
171
.10.1016/j.nucengdes.2013.04.021
17.
Martelli
,
E.
,
del Nevo
,
A.
,
Lorusso
,
P.
,
Giannetti
,
F.
,
Narcisi
,
V.
, and
Tarantino
,
M.
,
2020
, “
Investigation of Heat Transfer in a Steam Generator Bayonet Tube for the Development of PbLi Technology for EU DEMO Fusion Reactor
,”
Fusion Eng. Des.
,
159
(
October
), p.
111772
.10.1016/j.fusengdes.2020.111772
18.
Anitha
,
S.
, and
Pichumani
,
M.
,
2022
, “
Numerical Analysis on Heat Transfer Performance of Industrial Double-Tube Heat Exchanger Using CNT: Newtonian/Non-Newtonian Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.,
pp. 9603–9624
.10.1007/s10973-022-11249-z
19.
Gorensek
,
M. B.
, and
Summers
,
W. A.
,
2009
, “
Hybrid Sulfur Flowsheets Using PEM Electrolysis and a Bayonet Decomposition Reactor
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
4097
4114
.10.1016/j.ijhydene.2008.06.049
20.
Ronsse
,
F.
,
Pieters
,
J. G.
, and
Dewettinck
,
K.
,
2007
, “
Numerical Spray Model of the Fluidized Bed Coating Process
,”
Drying Technol.
,
25
(
9
), pp.
1491
1514
.10.1080/07373930701537245
21.
Kingsley
,
B.
,
Segal
,
B. L.
, and
Likoff
,
W.
,
1967
, “
Principles of Hydrome-Chanics: Comments on Thrombus Formation
,”
Engineering in the Practice of Medicine
,
B.L.
Segal
and
D.G.
Kilpatrick
, ed.,
Williams & Wilkins
,
Baltimore
, pp.
278
289
.
22.
Rouabhi
,
A.
,
Tijani
,
M.
,
Stab
,
O.
,
Charnavel
,
Y.
, and
You
,
T.
,
2008
, “
A Semi‐Analytical Approach for Modelling Heat Transfer During Salt‐Cavern Leaching Process
,”
Int. J. Numer. Anal. Methods Geomech.
,
32
(
13
), pp.
1617
1634
.10.1002/nag.686
23.
Vafeas
,
P.
,
Bakalis
,
P.
, and
Papadopoulos
,
P. K.
,
2019
, “
Effect of the Magnetic Field on the Ferrofluid Flow in a Curved Cylindrical Annular Duct
,”
Phys. Fluids
,
31
(
11
), p.
117105
.10.1063/1.5122708
24.
Moradi
,
H. V.
, and
Tavoularis
,
S.
,
2019
, “
Flow Instability in Weakly Eccentric Annuli
,”
Phys. Fluids
,
31
(
4
), p.
044104
.10.1063/1.5088992
25.
Dejam
,
M.
, and
Hassanzadeh
,
H.
,
2021
, “
The Role of a Porous Wall on the Solute Dispersion in a Concentric Annulus
,”
Phys. Fluids
,
33
(
11
), p.
116602
.10.1063/5.0070653
26.
Cao
,
Y.
, and
Li
,
R.
,
2018
, “
A Liquid Plug Moving in an Annular Pipe—Flow Analysis
,”
Phys. Fluids
,
30
(
9
), p.
093605
.10.1063/1.5050258
27.
Gao
,
Q.
,
Zhang
,
P.
,
Peng
,
W.
,
Chen
,
S.
, and
Zhao
,
G.
,
2021
, “
Structural Design Simulation of Bayonet Heat Exchanger for Sulfuric Acid Decomposition
,”
Energies
,
14
(
2
), p.
422
.10.3390/en14020422
28.
Steinhaus
,
H.
,
2016
, “
Wrocław Again
,”
Mathematician for All Seasons
,
Springer
, Berlin, pp.
85
283
.
29.
Luzzatto
,
C.
,
Morgana
,
A.
,
Chaudourne
,
S.
,
O'Doherty
,
T.
, and
Sorbie
,
G.
,
1997
, “
A New Concept Composite Heat Exchanger to Be Applied in High-Temperature Industrial Processes
,”
Appl. Therm. Eng.
,
17
(
8–10
), pp.
789
797
.10.1016/S1359-4311(96)00060-9
30.
Mohammed
,
H. A.
, and
Salman
,
Y. K.
,
2008
, “
Heat Transfer Measurements of Mixed Convection for Upward and Downward Laminar Flows Inside a Vertical Circular Cylinder
,”
Exp. Heat Transfer
,
21
(
1
), pp.
1
23
.10.1080/08916150701647801
31.
Li
,
C.
,
1986
, “
Effect of Radiation Heat Transfer on a Bayonet Tube Heat Exchanger
,”
AIChE J.
,
32
(
2
), pp.
341
343
.10.1002/aic.690320228
32.
Peterson
,
R. B.
, and
Vanderhoff
,
J. A.
,
2001
, “
Analysis of a Bayonet-Type Counterflow Heat Exchanger With Axial Conduction and Radiative Heat Loss
,”
Numer. Heat Transfer, Part A Appl.
,
40
(
3
), pp.
203
219
.10.1080/10407782.2001.10120633
33.
Yang
,
X.
,
Cai
,
Z.
, and
Luo
,
T.
,
2020
, “
A Special Type of Tube Receiver Unit for Solar Thermal Power Generation Towers
,”
Energy Rep.
,
6
(
November
), pp.
2841
2850
.10.1016/j.egyr.2020.10.017
34.
Bai
,
L.
,
Fu
,
J.
,
Pang
,
L.
,
Tao
,
Y.
,
Lin
,
G.
, and
Wen
,
D.
,
2020
, “
Experimental Study on a Dual Compensation Chamber Loop Heat Pipe With Dual Bayonet Tubes
,”
Appl. Therm. Eng.
,
180
(
November
), p.
115821
.10.1016/j.applthermaleng.2020.115821
35.
Lock
,
G. S.
, and
Wu
,
M.
,
1993
, “
Heat Transfer Characteristics of a Bayonet Tube Using Air Under Laminar Conditions
,”
Int. J. Heat Mass Transfer
,
36
(
2
), pp.
287
291
.10.1016/0017-9310(93)80004-E
36.
Lock
,
G. S. H.
, and
Minhas
,
H.
,
1997
, “
Bayonet Tube Heat Exchanger
,”
ASME Appl. Mech. Rev.
,
50
(
8
), pp.
445
473
.10.1115/1.3101733
37.
Minhas
,
H.
, and
Lock
,
G. S.
,
1995
, “
Transitional Forced Convection in a Bayonet Tube
,”
Int. Commun. Heat Mass Transfer
,
22
(
5
), pp.
721
728
.10.1016/0735-1933(95)00058-7
38.
Minhas
,
H.
,
Lock
,
G. S.
, and
Wu
,
M.
,
1995
, “
Flow Characteristics of an Air-Filled Bayonet Tube Under Laminar Conditions
,”
Int. J. Heat Fluid Flow
,
16
(
3
), pp.
186
193
.10.1016/0142-727X(95)97181-Q
39.
Minhas
,
H.
,
Lock
,
G. S.
, and
Wu
,
M.
,
1997
, “
Forced Convection in an Air-Filled Bayonet Tube During the Laminar-Turbulent Transition
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1885
1894
.10.1016/S0017-9310(96)00225-6
40.
Pérez-Álvarez
,
R.
,
Rodríguez-Sánchez
,
M. R.
,
Acosta-Iborra
,
A.
, and
Santana
,
D.
,
2018
, “
Effect of Eccentricity on the Hydrodynamics and Heat Transfer of Molten Salt in Bayonet Receivers for Solar Power Towers
,”
AIP Conference Proceedings
,
AIP Publishing LLC
, Vol. 2033, Madrid, Spain, Nov. 8, p.
080004
.
41.
Kaneda
,
M.
,
Yu
,
B.
,
Ozoe
,
H.
, and
Churchill
,
S. W.
,
2003
, “
The Characteristics of Turbulent Flow and Convection in Concentric Circular Annuli. Part I: Flow
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
5045
5057
.10.1016/S0017-9310(03)00365-X
42.
Lundberg
,
R. E.
,
McCuen
,
P. A.
, and
Reynolds
,
W. C.
,
1963
, “
Heat Transfer in Annular Passages. Hydrodynamically Developed Laminar Flow With Arbitrarily Prescribed Wall Temperatures or Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
6
(
6
), pp.
495
529
.10.1016/0017-9310(63)90124-8
43.
Swamee
,
P. K.
,
Aggarwal
,
N.
, and
Aggarwal
,
V.
,
2008
, “
Optimum Design of Double Pipe Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2260
2266
.10.1016/j.ijheatmasstransfer.2007.10.028
44.
Bai
,
W.
,
Chen
,
W.
,
Zeng
,
C.
,
Wu
,
G.
, and
Chai
,
X.
,
2022
, “
Thermo-Hydraulic Performance Investigation of Heat Pipe Used Annular Heat Exchanger With Densely Longitudinal Fins
,”
Appl. Therm. Eng.
,
211
(
July
), p.
118451
.10.1016/j.applthermaleng.2022.118451
45.
Alzoubi
,
M. A.
, and
Sasmito
,
A. P.
,
2017
, “
Thermal Performance Optimization of a Bayonet Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
111
(
January
), pp.
232
247
.10.1016/j.applthermaleng.2016.09.052
46.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
, “
Compact Heat Exchangers
, 1984-01-01 OSTI Identifier: 6132549 Book”
.
47.
Astakhov
,
V. P.
,
2012
, “
Environmentally Friendly Near-Dry Machining of Metals
,”
Metalworking Fluids (MWFs) for Cutting and Grinding: Fundamentals and Recent Advances
, Elsevier, USA, pp.
135
200
.
48.
Verde
,
M.
,
William
,
J. B.
,
Estrada Porcel
,
C.
,
Estevam
,
V.
,
Tavares
,
A.
,
Neto
,
S. J. A.
,
Rocha
,
P. S. D M.
, and
Bannwart
,
A. C.
,
2021
, “
Experimental Investigation of Pressure Drop in Failed Electrical Submersible Pump (ESP) Under Liquid Single-Phase and Gas-Liquid Two-Phase Flow
,”
J. Pet. Sci. Eng.
,
198
(
March
), p.
108127
.10.1016/j.petrol.2020.108127
49.
Kurnia
,
J. C.
,
Sasmito
,
A. P.
, and
Mujumdar
,
A. S.
,
2014
, “
Laminar Heat Transfer Performance of Power Law Fluids in Coiled Square Tube With Various Configurations
,”
Int. Commun. Heat Mass Transfer
,
57
(
October
), pp.
100
108
.10.1016/j.icheatmasstransfer.2014.07.016
50.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
51.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis,
J. Fluids Eng.
, 104(2), pp.
250
258
.10.1115/1.3241818
52.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.https://cir.nii.ac.jp/crid/1571698599500606336#citations_container
53.
Said
,
Z.
,
Sabiha
,
M. A.
,
Saidur
,
R.
,
Hepbasli
,
A.
,
Rahim
,
N. A.
,
Mekhilef
,
S.
, and
Ward
,
T. A.
,
2015
, “
Performance Enhancement of a Flat Plate Solar Collector Using Titanium Dioxide Nanofluid and Polyethylene Glycol Dispersant
,”
J. Cleaner Prod.
,
92
, pp.
343
353
.10.1016/j.jclepro.2015.01.007
54.
Saleh
,
B.
, and
Sundar
,
L. S.
,
2021
, “
Entropy Generation and Exergy Efficiency Analysis of Ethylene Glycol-Water Based Nanodiamond+ Fe3O4 Hybrid Nanofluids in a Circular Tube
,”
Powder Technol.
,
380
, pp.
430
442
.10.1016/j.powtec.2020.12.006
55.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2018
,
Materials Science and Engineering: An Introduction
,
Wiley
,
New York
, Vol.
9
.
57.
Lv
,
S.
,
He
,
W.
,
Jiang
,
Q.
,
Hu
,
Z.
,
Liu
,
X.
,
Chen
,
H.
, and
Liu
,
M.
,
2018
, “
Study of Different Heat Exchange Technologies Influence on the Performance of Thermoelectric Generators
,”
Energy Convers. Manage.
,
156
, pp.
167
177
.10.1016/j.enconman.2017.11.011
58.
Li
,
Y.
,
Mao
,
J.
,
Geng
,
S.
,
Han
,
X.
, and
Zhang
,
H.
,
2014
, “
Evaluation of Thermal Short-Circuiting and Influence on Thermal Response Test for Borehole Heat Exchanger
,”
Geothermics
,
50
, pp.
136
147
.10.1016/j.geothermics.2013.09.010
59.
Cebeci
,
T.
,
2012
,
Analysis of Turbulent Boundary Layers
,
Elsevier
, Amsterdam, The Netherlands.
You do not currently have access to this content.