Abstract

The Graetz problem in a transpiration-cooled channel was analytically attacked so as to explore the developing temperature field due to a sudden change in wall temperature of the channel subject to an arbitrary distribution of the local mass flux over the porous wall. Analytical expressions for the developments of the thermal boundary layer thickness, wall temperature, and Nusselt number were obtained for the thermal entrance region, assuming hydrodynamically forced convective flow in a channel with a locally variable blowing mass flux. When the blowing mass flux is kept constant over the wall surface, the cooling by the coolant is less effective near the entrance, thus, exposing to danger of thermal damage. This study reveals that the blowing mass flux graded inversely proportional to one-third power of the axial distance is quite effective to keep the wall temperature uniform. Numerical calculations based on finite volume method were also carried out to verify the analysis. The findings from this study can be applied to possible thermal managements of heat generating stacks such as in EV batteries and PEMFC, in which temperature uniformity is essential for product longevity.

References

1.
Graetz
,
L.
,
1885
, “
Ueber Die Wärmeleitungsfähigkeit Von Flüssigkeiten
,”
Annu. Rev. Phys. Chem.
,
25
, pp.
337
357
.10.1002/andp.18822540106
2.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
, pp.
78
138
.
3.
White
,
F. M.
,
1974
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
, pp.
132
138
.
4.
Bejan
,
A.
,
2013
,
Convective Heat Transfer
, 4th ed.,
Wiley
, Hoboken, NJ, pp.
121
129
.
5.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
V. J. H.
,
2011
,
A Heat Transfer Textbook
, 3rd ed.,
Dover Publications
, Cambridge, MA, pp.
327
330
.
6.
White
,
F. M.
,
1974
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
, pp.
153
159
.
7.
Berman
,
R. S.
,
1953
, “
Laminar Flow in Channels With Porous Walls
,”
J. Appl. Phys.
,
24
(
9
), pp.
1232
1235
.10.1063/1.1721476
8.
Sellars
,
J. R.
,
1955
, “
Laminar Flow in Channels With Porous Walls at High Suction Reynolds Numbers
,”
J. Appl. Phys.
,
26
(
4
), pp.
489
490
.10.1063/1.1722024
9.
Yuan
,
S. W.
,
1956
, “
Further Investigation of Laminar Flow in Channels With Porous Walls
,”
J. Appl. Phys.
,
27
(
3
), pp.
267
269
.10.1063/1.1722355
10.
Donoughe
,
P. L.
,
1954
, “
Exact Solutions of Laminar-Boundary-Layer Equations With Constant Property Values for Porous Wall With Variable Temperature
,” NACA, Washington, DC, Report No.
NACA-TN
-
3579
.
11.
Eckert
,
E. R. G.
,
Donoughe
,
P. L.
, and
Moore
,
B. J.
,
1957
, “Velocity and Friction Characteristics of Laminar Viscous Boundary-Layer and Channel Flow Over Surfaces With Ejection or Suction,” NACA, Washington, DC, Report No. NACA-TN-4102.
12.
White
,
F. M.
,
1962
, “
Laminar Flow in a Uniformly Porous Tube
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
201
204
.10.1115/1.3636459
13.
Zhou
,
F.
, and
Catton
,
I.
,
2012
, “
Volume Averaging Theory (VAT) Based Modeling and Closure Evaluation for Fin-and-Tube Heat Exchangers
,”
Heat Mass Transfer
,
48
(
10
), pp.
1813
1823
. 10.1007/s00231-012-1025-7
14.
Zhou
,
F.
,
Hansen
,
N. E.
,
Geb
,
D. J.
, and
Catton
,
I.
,
2011
, “
Obtaining Closure for Fin-and-Tube Heat Exchanger Modeling Based on Volume Averaging Theory (VAT)
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111802
.10.1115/1.4004393
15.
Zhang
,
W.
,
Yi
,
Y.
,
Bai
,
X.
, and
Nakayama
,
A.
,
2020
, “
A Local Thermal Non-Equilibrium Analysis for Convective and Radiative Heat Transfer in Gaseous Transpiration Cooling Through a Porous Wall
,”
Int. J. Heat Mass Transfer
,
162
, p.
120389
.10.1016/j.ijheatmasstransfer.2020.120389
16.
Bai
,
X.
,
Yi
,
Y.
,
Liu
,
C.
,
Zhang
,
W.
, and
Nakayama
,
A.
,
2021
, “
A Simple Conjugate Analysis and Its Comparison With Experiment for Heat Transfer Problems Associated With Hot Gas Flows in a Partially Transpiration-Cooled Channel
,”
Int. J. Heat Mass Transfer
,
165
, p.
120729
.10.1016/j.ijheatmasstransfer.2020.120729
17.
Nakayama
,
A.
,
Yi
,
Y.
,
Bai
,
X.
, and
Zhang
,
W.
,
2022
, “
A Two-Domain Analytical Approach for Laminar and Turbulent Forced Convection in a Transpiration-Cooled Channel
,”
Int. J. Heat Mass Transfer
,
184
, p.
122247
.10.1016/j.ijheatmasstransfer.2021.122247
18.
Afzal
,
A.
,
Mohammed Samee
,
A. D.
,
Abdul Razak
,
R. K.
, and
Ramis
,
M. K.
,
2021
, “
Thermal Management of Modern Electric Vehicle Battery Systems (MEVBS)
,”
J. Therm. Anal. Calorim.
,
144
(
4
), pp.
1271
1285
.10.1007/s10973-020-09606-x
19.
Kandlikar
,
S. G.
, and
Lu
,
Z.
,
2009
, “
Thermal Management Issues in a PEMFC Stack—A Brief Review of Current Status
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1276
1280
.10.1016/j.applthermaleng.2008.05.009
20.
Nakayama
,
A.
,
1995
,
PC-Aided Numerical Heat Transfer and Convective Flow
,
CRC Press
,
Boca Raton, FL
.
21.
Yi
,
Y.
,
2021
, “General Local Thermal Non-Equilibrium Treatments for External and Internal Flows in Porous Media,” Ph.D. dissertation, Shizuoka University, Shizuoka, Japan.
22.
von Wolfersdorf
,
J.
,
2005
, “
Effect of Coolant Side Heat Transfer on Transpiration Cooling
,”
Heat Mass Transfer
,
41
(
4
), pp.
327
337
.10.1007/s00231-004-0549-x
23.
Bai
,
X.
, and
Nakayama
,
A.
,
2019
, “
A Local Thermal Non-Equilibrium Integral Analysis for Forced Convective Thermal Boundary Development in a Channel Filled With in a Fluid Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
,
142
, p.
118446
.10.1016/j.ijheatmasstransfer.2019.118446
24.
Nakayama
,
A.
,
Sano
,
Y.
,
Bai
,
X.
, and
Tado
,
K.
,
2017
, “
A Boundary Layer Analysis for Determination of the Limiting Current Density in an Electrodialysis Desalination
,”
Desalination
,
404
(
17
), pp.
41
49
.10.1016/j.desal.2016.10.013
25.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.