Abstract

Natural convective heat transfer can be enhanced through either fins or riblets, wall roughness elements, or the injection of bubbles in the flow. Bubble injections in a quiescent (pseudo-turbulent) liquid phase or an already turbulent liquid phase had been shown to enhance the natural convective heat transfer from literature. However, study of the combined effect of bubble size and gas volume fraction rather than individual effect on natural convective heat transfer enhancement for homogeneous bubbly flow is lacking. The present work intends to fill in that data gap through conducting numerical simulations to study the combined effect of bubble size and gas volume fraction on natural convective heat transfer enhancement. The present numerical work employs the validated interphase force models and the Eulerian–Eulerian model. ansysfluent is used to simulate a bubbly flow in a three-dimensional rectangular channel with a natural convective heat transfer. Bubbles ranging from microto millimeter diameter with inlet gas volume fraction varied in the range of 0.351–3.725% are injected upward to a quiescent liquid phase in a rectangular channel with a heated left wall and a cooled right wall. The flow regime is homogeneous without bubble coalescence and breakup effect. Validated computational models are employed to study the combined effect of bubble size and gas volume fraction on heat transfer enhancement. A relation between Nusselt number, bubble Reynolds number, Rayleigh number, nondimensional bubble size, and inlet gas volume fraction is constructed using the power regression method.

References

1.
Kitagawa
,
A.
, and
Murai
,
Y.
,
2013
, “
Natural Convection Heat Transfer From a Vertical Heated Plate in Water With Microbubble Injection
,”
Chem. Eng. Sci.
,
99
, pp.
215
224
.10.1016/j.ces.2013.05.027
2.
Kitagawa
,
A.
,
Uchida
,
K.
, and
Hagiwara
,
Y.
,
2009
, “
Effects of Bubble Size on Heat Transfer Enhancement by Sub-Millimeter Bubbles for Laminar Natural Convection Along a Vertical Plate
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
778
788
.10.1016/j.ijheatfluidflow.2009.02.008
3.
Howard
,
J. A.
,
Walsh
,
P. A.
, and
Walsh
,
E. J.
,
2011
, “
Prandtl and Capillary Effects on Heat Transfer Performance Within Laminar Liquid-Gas Slug Flows
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4752
4761
.10.1016/j.ijheatmasstransfer.2011.05.029
4.
Betz
,
A. R.
, and
Attinger
,
D.
,
2010
, “
Bubble Injection to Enhance Heat Transfer in Microchannel Heat Sinks
,”
ASME
Paper No. IMECE2009-11972.10.1115/IMECE2009-11972
5.
Law
,
D.
, and
Hinkle
,
H.
,
2018
, “
Eulerian-Eulerian Modeling of Convective Heat Transfer Enhancement in Upward Vertical Channel Flows by Gas Injection
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
024501
.10.1115/1.4037650
6.
Shakerin
,
S.
,
Bohn
,
M.
, and
Loehrke
,
R.
,
1988
, “
Natural Convection in an Enclosure With Discrete Roughness Elements on a Vertical Heated Wall
,”
Int. J. Multiphase Flow
,
31
(
7
), pp.
1423
1430
.10.1016/0017-9310(88)90251-7
7.
Roche
,
P.-E.
,
Castaing
,
B.
,
Chabaud
,
B.
, and
Hébral
,
B.
,
2001
, “
Observation of the 1/2 Power Law in Rayleigh–Bénard Convection
,”
Phys. Rev. E
,
63
(
4
), p.
045303
.10.1103/PhysRevE.63.045303
8.
Tisserand
,
J.-C.
,
Creyssels
,
M.
,
Gasteuil
,
Y.
,
Pabiou
,
H.
,
Gibert
,
M.
,
Castaing
,
B.
, and
Chilla
,
F.
,
2011
, “
Comparison Between Rough and Smooth Plates Within the Same Rayleigh–Bénard Cell
,”
Phys. Fluids
,
23
(
1
), p.
015105
.10.1063/1.3540665
9.
Xie
,
Y.-C.
, and
Xia
,
K.-Q.
,
2017
, “
Turbulent Thermal Convection Over Rough Plates With Varying Roughness Geometries
,”
J. Fluid Mech.
,
825
, pp.
573
599
.10.1017/jfm.2017.397
10.
Gvozdić
,
B.
,
Alméras
,
E.
,
Mathai
,
V.
,
Zhu
,
X.
,
van Gils
,
D. P. M.
,
Verzicco
,
R.
,
Huisman
,
S. G.
, et al.,
2018
, “
Experimental Investigations of Heat Transport in Homogeneous Bubbly Flow
,”
J. Fluid Mech.
,
845
, pp.
226
244
.10.1017/jfm.2018.213
11.
Deckwer
,
W. D.
,
1980
, “
On the Mechanism of Heat Transfer in Bubble Column Reactors
,”
Chem. Engng Sci.
,
35
(
6
), pp.
1341
1346
.10.1016/0009-2509(80)85127-X
12.
Ma
,
F.
, and
Shen
,
Z. Q.
,
2004
, “
Convective Heat Transfer Enhancement by Inert Gas Injection
,”
J. Dalian Univ. Technol.
,
44
(
4
), pp.
490
494
.
13.
Yamamoto
,
K.
,
Kitagawa
,
A.
, and
Hagiwara
,
Y.
,
2011
, “
Heat Transfer Enhancement of Natural Convection Along a Vertical Heated Plate by Microbubble Injection
,”
ASME
Paper No. AJK2011-11028.10.1115/AJK2011-11028
14.
Molin
,
D.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2012
, “
Turbulence Modulation and Microbubble Dynamics in Vertical Channel Flow
,”
Int. J. Multiphase Flow
,
42
, pp.
80
95
.10.1016/j.ijmultiphaseflow.2012.01.010
15.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
,
1981
, “
Momentum and Heat Transfer in Two-Phase Bubble Flow. Part I. Theory
,”
Int. J. Multiphase Flow
,
7
(
2
), pp.
167
177
.10.1016/0301-9322(81)90003-3
16.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
,
1981
, “
Momentum and Heat Transfer in Two-Phase Bubble Flow. Part II. A Comparison Between Experimental Data and Theoretical Calculations
,”
Int. J. Multiphase Flow
,
7
(
2
), pp.
179
190
.10.1016/0301-9322(81)90004-5
17.
Choo
,
K.
, and
Kim
,
S.
,
2011
, “
Heat Transfer and Fluid Flow Characteristics of Nonboiling Two-Phase Flow in Microchannels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
10
), p.
102901
.10.1115/1.4004208
18.
Hernandez-Alvarado
,
F.
,
Kalaga
,
D. V.
,
Turney
,
D.
,
Banerjee
,
S.
,
Joshi
,
J. B.
, and
Kawaji
,
M.
,
2017
, “
Void Fraction, Bubble Size and Interfacial Area Measurements in Co-Current Downflow Bubble Column Reactor With Microbubble Dispersion
,”
Chem. Eng. Sci.
,
168
, pp.
403
413
.10.1016/j.ces.2017.05.006
19.
Alméras
,
E.
,
Mathai
,
V.
,
Lohse
,
D.
, and
Sun
,
C.
,
2017
, “
Experimental Investigation of the Turbulence Induced by a Bubble Swarm Rising Within Incident Turbulence
,”
J. Fluid Mech.
,
825
, pp.
1091
1112
.10.1017/jfm.2017.410
20.
Tokuhiro
,
A. T.
, and
Lykoudis
,
P. S.
,
1994
, “
Natural Convection Heat Transfer From a Vertical Plate-I. Enhancement With Gas Injection
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
997
1003
.10.1016/0017-9310(94)90224-0
21.
Zumbrunnen
,
D. A.
, and
Balasubramanian
,
M.
,
1995
, “
Convective Heat Transfer Enhancement Due to Gas Injection Into an Impinging Liquid Jet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
4
), pp.
1011
1017
.10.1115/1.2836275
22.
Bayazit
,
B. B.
,
Hollingsworth
,
D. K.
, and
Witte
,
L. C.
,
2003
, “
Heat Transfer Enhancement Caused by Sliding Bubbles
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
3
), pp.
503
509
.10.1115/1.1565090
23.
Houshmand
,
F.
, and
Peles
,
Y.
,
2014
, “
Impact of Flow Dynamics on the Heat Transfer of Bubbly Flow in a Microchannel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
2
), p.
022902
.10.1115/1.4025435
24.
Dabiri
,
S.
, and
Tryggvason
,
G.
,
2015
, “
Heat Transfer in Turbulent Bubbly Flow in Vertical Channels
,”
Chem. Eng. Sci.
,
122
, pp.
106
113
.10.1016/j.ces.2014.09.006
25.
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2013
, “
Direct Numerical Simulation of Wall-to-Liquid Heat Transfer in Dispersed Gas–Liquid Two-Phase Flow Using a Volume of Fluid Approach
,”
Chem. Eng. Sci.
,
102
, pp.
268
282
.10.1016/j.ces.2013.08.025
26.
Li
,
W. Z.
,
Zhao
,
D. Y.
, and
Chen
,
G. J.
,
2006
, “
Numerical Simulation on Effects of Vertical Channel Wide on Deformation and Heat Transfer of a Rising Gas Bubble
,”
Chin. J. Comput. Mech.
,
23
(
2
), pp.
196
201
.
27.
Willard
,
J. R.
, and
Hollingsworth
,
D. K.
,
2016
, “
Numerical Investigation of Flow Structure and Heat Transfer Produced by a Single Highly Confined Bubble in a Pressure-Driven Channel Flow
,”
ASME
Paper No. HT-17-1321.10.1115/HT-17-1321
28.
Wang
,
Q.
, and
Yao
,
W.
,
2016
, “
Computation and Validation of the Interphase Force Models for Bubbly Flow
,”
Int. J. Heat Mass Transfer
,
98
, pp.
799
813
.10.1016/j.ijheatmasstransfer.2016.03.064
29.
Law
,
D.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
,
2006
, “
Numerical Simulations of Gas-Liquid Flow Dynamics in Bubble Columns
,”
ASME
Paper No. IMECE2006-13544.10.1115/IMECE2006-13544
30.
Law
,
D.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
,
2008
, “
Model Validation for Low and High Superficial Gas Velocity Bubble Column Flows
,”
Chem. Eng. Sci
,.,
63
(
18
), pp.
4605
4616
.10.1016/j.ces.2008.07.001
31.
Law
,
D.
,
Jones
,
S. T.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
,
2011
, “
A Combined Numerical and Experimental Study of Hydrodynamics for an Air-Water External Loop Airlift Reactor
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021301
.10.1115/1.4003424
32.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.10.1016/0301-9322(75)90030-0
33.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
34.
Miyahara
,
T.
,
Matsuba
,
Y.
, and
Takahashi
,
T.
,
1983
, “
The Size of Bubbles Generated From Perforated Plates
,”
Int. Chem. Eng.
,
23
, pp.
517
523
.10.1252/kakoronbunshu.8.13
You do not currently have access to this content.