Abstract

Downsizing the heat exchanger without compromising its heat exchange capacity is highly desirable for containing the box volume of a thermal management system. This investigation seeks to substantially boost the thermal compactness of a widely used gas-to-liquid heat exchanger, called finned tube arrays. For that purpose, winglet-type vortex generators are adopted. The novelty of the present study lies in the fact that it uses regression analysis to develop thermo-hydraulic functional correlations corresponding to three diverse design parameters of winglet-type vortex generators: the attack angle, the location and the geometric aspect ratio. In addition, enhancement in the wake-affected heat transfer is specifically examined, followed by a proof-of-concept study by making the best design(s) of vortex generators perform under widely varying operating conditions. Based on a thermo-hydraulic assessment of the generators' attack angle, 45-degrees is the limiting value of optimal attack angle. Although multiple winglet locations are found to deliver the desired thermal augmentation, a few locations incur disproportionate flow loss whereas majority locations facilitate linearized thermal augmentation. It is encouraging to find that the relative Colburn j-factor of the modified heat exchanger increases with the Reynolds number, despite the absolute values bearing an inverse correlation. While the highest augmentation in the average Colburn j-factor equals 44.1%, it is 150.1% over the wake-affected fin surface.

References

1.
Wang
,
Q.
,
Zeng
,
M.
,
Ma
,
T.
,
Du
,
X.
, and
Yang
,
J.
,
2014
, “
Recent Development and Application of Several High Efficiency Surface Heat Exchangers for Energy Conversion and Utilization
,”
Appl. Energy
,
135
, pp.
748
777
.10.1016/j.apenergy.2014.05.004
2.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
3.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet Type Vortex Generator Arrays in Compact Plain Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.10.1016/j.ijrefrig.2007.04.011
4.
Huisseune
,
H.
,
T'Joen
,
C.
,
Jaeger
,
P. D.
,
Ameel
,
B.
,
Schampheleire
,
S. D.
, and
Paepe
,
M. D.
,
2013
, “
Performance Enhancement of a Louvered Fin Heat Exchanger by Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
475
487
.10.1016/j.ijheatmasstransfer.2012.09.004
5.
Sinha
,
A.
,
Raman
,
K. A.
,
Chattopadhyay
,
H.
, and
Biswas
,
G.
,
2013
, “
Effects of Different Orientations of Winglet Arrays on the Performance of Plate-Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
202
214
.10.1016/j.ijheatmasstransfer.2012.10.034
6.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
4
), pp.
880
885
.10.1115/1.2911462
7.
Zhang
,
Y. H.
,
Wu
,
X.
,
Wang
,
L. B.
,
Song
,
K. W.
,
Dong
,
Y. X.
, and
Liu
,
S.
,
2008
, “
Comparison of Heat Transfer Performance of Tube Bank Fin With Mounted Vortex Generators to Tube Bank Fin With Punched Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
58
66
.10.1016/j.expthermflusci.2008.07.002
8.
Song
,
K.
,
Xi
,
Z.
,
Su
,
M.
,
Wang
,
L.
,
Wu
,
X.
, and
Wang
,
L.
,
2017
, “
Effect of Geometric Size of Curved Delta Winglet Vortex Generators and Tube Pitch on Heat Transfer Characteristics of Fin-Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
8
18
.10.1016/j.expthermflusci.2016.11.002
9.
He
,
Y. L.
,
Chu
,
P.
,
Tao
,
W. Q.
,
Zhang
,
Y. W.
, and
Xie
,
T.
,
2013
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet-Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.10.1016/j.applthermaleng.2012.02.040
10.
Gong
,
J.
,
Min
,
C.
,
Qi
,
C.
,
Wang
,
E.
, and
Tian
,
L.
,
2013
, “
Numerical Simulation of Flow and Heat Transfer Characteristics in Wavy Fin-and-Tube Heat Exchanger With Combined Longitudinal Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
43
, pp.
53
56
.10.1016/j.icheatmasstransfer.2013.01.004
11.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4327
4338
.10.1016/j.ijheatmasstransfer.2004.04.031
12.
Jang
,
J. Y.
,
Hsu
,
L. F.
, and
Leu
,
J. S.
,
2013
, “
Optimization of the Span Angle and Location of Vortex Generators in a Plate-Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
67
, pp.
432
444
.10.1016/j.ijheatmasstransfer.2013.08.028
13.
Liu
,
Y.
,
Ma
,
X.
,
Ye
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
, and
Lan
,
Z.
,
2019
, “
Heat Transfer Enhancement of Annular Finned Tube Exchanger Using Vortex Generators: The Effect of Oriented Functional Circumferential Arrangement
,”
Therm. Sci. Eng. Prog.
,
10
, pp.
27
35
.10.1016/j.tsep.2018.12.010
14.
Naik
,
H.
, and
Tiwari
,
S.
,
2021
, “
Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of Different Locations of Winglets Mounted in Fin-Tube Heat Exchangers
,”
Therm. Sci. Eng. Prog.
,
22
, p.
100795
.10.1016/j.tsep.2020.100795
15.
Li
,
W.
,
Khan
,
T. A.
,
Tang
,
W.
, and
Minkowycz
,
W. J.
,
2018
, “
Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
11
), p.
111801
.10.1115/1.4040609
16.
Salleh
,
M. F. M.
,
Gholami
,
A.
, and
Wahid
,
M. A.
,
2019
, “
Numerical Evaluation of Thermal Hydraulic Performance in Fin-and-Tube Heat Exchangers With Various Vortex Generator Geometries Arranged in Common-Flow-Down or Common-Flow-Up
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
2
), p.
021801
.10.1115/1.4041832
17.
Agarwal
,
S.
, and
Sharma
,
R. P.
,
2016
, “
Numerical Investigation of Heat Transfer Enhancement Using Hybrid Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031007
.10.1115/1.4033213
18.
Khan
,
T. A.
, and
Li
,
W.
,
2018
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
.10.1115/1.4038418
19.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2019
, “
Inclination Angle Optimization for “Inclined Projected Winglet Pair” Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011014
.10.1115/1.4041438
20.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Investigation of Performance Augmentation Due to Geometric Modification of Vortex Generators Placed in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
050906
.10.1115/1.4062129
21.
Gorji
,
M.
,
Mirgolbabaei
,
H.
,
Barari
,
A.
,
Domairry
,
G.
, and
Nadim
,
N.
,
2011
, “
Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers
,”
Int. J. Numer. Methods Fluids
,
66
(
6
), pp.
705
713
.10.1002/fld.2278
22.
Lu
,
G.
, and
Zhou
,
G.
,
2016
, “
Numerical Simulation on Performances of Plane and Curved Winglet Type Vortex Generator Pairs With Punched Holes
,”
Int. J. Heat Mass Transfer
,
102
, pp.
679
690
.10.1016/j.ijheatmasstransfer.2016.06.063
23.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
9
), pp.
1156
1167
.10.1115/1.2740308
24.
Tian
,
L.
,
He
,
Y.
,
Tao
,
Y.
, and
Tao
,
W.
,
2009
, “
A Comparative Study on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchanger With Punched Delta Winglets in Staggered and in-Line Arrangements
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1765
1776
.10.1016/j.ijthermalsci.2009.02.007
25.
Qiang
,
W.
,
Zuoqin
,
Q.
,
Junlin
,
C.
,
Jie
,
R.
, and
Weilong
,
H.
,
2019
, “
Investigation on Heat Transfer Performance and Flow Resistance Characteristics in Finned-Tube Heat Exchangers With Different Vortex Generator Positions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
9
), p.
091804
.10.1115/1.4042008
26.
Arora
,
A.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2016
, “
Development of Parametric Space for the Vortex Generator Location for Improving Thermal Compactness of an Existing Inline Fin and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
98
, pp.
727
742
.10.1016/j.applthermaleng.2015.12.117
27.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
, 8th ed.,
McGraw-Hill
,
New York
.
28.
Kwak
,
K. M.
,
Torii
,
K.
, and
Nishino
,
K.
,
2005
, “
Simultaneous Heat Transfer Enhancement and Pressure Loss Reduction for Finned-Tube Bundles With the First or Two Transverse Rows of Built-in Winglets
,”
Exp. Therm. Fluid Sci.
,
29
(
5
), pp.
625
632
.10.1016/j.expthermflusci.2004.08.005
29.
Sinha
,
A.
,
Chattopadhyay
,
H.
,
Iyengar
,
A. K.
, and
Biswas
,
G.
,
2016
, “
Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
101
, pp.
667
681
.10.1016/j.ijheatmasstransfer.2016.05.032
30.
Tang
,
L. H.
,
Tan
,
S. C.
,
Gao
,
P. Z.
, and
Zeng
,
M.
,
2016
, “
Parameters Optimization of Fin-and-Tube Heat Exchanger With a Novel Vortex Generator Fin by Taguchi Method
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
369
381
.10.1080/01457632.2015.1052715
31.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
,
1993
, “
Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
7
(
4
), pp.
287
295
.10.1016/0894-1777(93)90052-K
You do not currently have access to this content.