Abstract

The measurement of surface temperatures in highly unsteady flow environments is a challenging task pertaining to the need for high-frequency sensors. This paper contains the sequential activities related to a fast response thermal probe (coaxial surface junction probe—CSJP). This probe is prepared in the laboratory, and its salient features are explored for short-duration (∼20 ms) experiments. The surface junction morphology and inside texture of the probe are examined under field emission scanning electron microscope (FESEM). The study confirms the plastic deformation of thermo-elements with an average junction thickness of 21 μm. The static calibration of the probe using a glycerin bath shows a linear trend between voltage and temperature from which the sensitivity value is calculated as 59 μV/°C. The “thermal product” of the probe is also measured experimentally through the “water droplet technique,” and its value is found to be 8677 J/m2 s0.5 K. The concept of one-dimensional heat flux modeling is followed to infer surface heat flux from transient temperatures. For assuring prediction of heat flux, the probe is calibrated experimentally by exposing to a laser source of known wattage (2 W and 3 W). These findings are also supported by numerical simulation of the probe with accuracy in prediction for surface temperature and heat flux as  ± 2% and ±3%, respectively. The performance capability of the probe is demonstrated through shock-tube flow experiments to measure instantaneous heat flux. The comparison of the transient response behavior (9500 K/s) with pressure transducer justifies the utility of the probe under hostile flow environment.

References

1.
Agarwal
,
S.
,
Sahoo
,
N.
,
Irimpan
,
K. J.
,
Menezes
,
V.
, and
Desai
,
S.
,
2017
, “
Comparative Performance Assessments of Surface Junction Probes for Stagnation Heat Flux Estimation in a Hypersonic Shock Tunnel
,”
Int. J. Heat Mass Transfer
,
114
, pp.
748
757
.10.1016/j.ijheatmasstransfer.2017.06.109
2.
Agarwal
,
S.
,
Sahoo
,
N.
, and
Singh
,
R. K.
,
2016
, “
Experimental Techniques for Thermal Product Determination of Coaxial Surface Junction Thermocouples During Short Duration Transient Measurements
,”
Int. J. Heat Mass Transfer
,
103
, pp.
327
335
.10.1016/j.ijheatmasstransfer.2016.07.062
3.
Mohammed
,
H.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2008
, “
Design and Fabrication of Coaxial Surface Junction Thermocouples for Transient Heat Transfer Measurements
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
853
859
.10.1016/j.icheatmasstransfer.2008.03.009
4.
Desikan
,
S. L. N.
,
Suresh
,
K.
,
Srinivasan
,
K.
, and
Raveendran
,
P. G.
,
2016
, “
Fast Response Coaxial Thermocouple for Short Duration Impulse Facilities
,”
Appl. Therm. Eng.
,
96
, pp.
48
56
.10.1016/j.applthermaleng.2015.11.074
5.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” AGARDograph-AG-165, Technical Editing and Reproduction Ltd., London, Report No. AGARD-AG-165.
6.
Sanderson
,
S. R.
, and
Sturtevant
,
B.
,
2002
, “
Transient Heat Flux Measurement Using a Surface Junction Thermocouple
,”
Rev. Sci. Instrum.
,
73
(
7
), pp.
2781
2787
.10.1063/1.1484255
7.
Irimpan
,
K. J.
,
Mannil
,
N.
,
Arya
,
H.
, and
Menezes
,
V.
,
2015
, “
Performance Evaluation of Coaxial Thermocouple Against Platinum Thin Film Gauge for Heat Flux Measurement in Shock Tunnel
,”
Measurement
,
61
, pp.
291
298
.10.1016/j.measurement.2014.10.056
8.
Rout
,
A. K.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2020
, “
Effectiveness of Coaxial Surface Junction Thermal Probe for Transient Measurements Through Laser Based Heat Flux Assessment
,”
Heat Mass Transfer
,
56
(
4
), pp.
1141
–11
52
.10.1007/s00231-019-02775-y
9.
Kumar
,
R.
, and
Sahoo
,
N.
,
2013
, “
Dynamic Calibration of a Coaxial Thermocouples for Short Duration Transient Measurements
,”
ASME J. Heat Transfer
,
135
(
12
), p.
124502
.10.1115/1.4024593
10.
Kumar
,
R.
,
Sahoo
,
N.
,
Kulkarni
,
V.
, and
Singh
,
A.
,
2011
, “
Laser Based Calibration Technique of Thin Film Gauges for Short Duration Transient Measurements
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
044504
.10.1115/1.4005075
11.
Kumar
,
R.
,
Sahoo
,
N.
, and
Kulkarni
,
V.
,
2012
, “
Conduction Based Calibration of Handmade Platinum Thin Film Heat Transfer Gauges for Transient Measurements
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2707
2713
.10.1016/j.ijheatmasstransfer.2012.01.026
12.
Sahoo
,
N.
, and
Peetala
,
R. K.
,
2011
, “
Transient Surface Heating Rates From a Nickel Film Sensor Using Inverse Analysis
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1297
1302
.10.1016/j.ijheatmasstransfer.2010.11.029
13.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2011
, “
Dynamic Calibration and Performance of Reliable and Fast-Response Coaxial Temperature Probes in a Shock Tube Facility
,”
Exp. Heat Transfer
,
24
(
2
), pp.
109
132
.10.1080/08916152.2010.482752
14.
Sahoo
,
N.
,
Saravanan
,
S.
,
Jagadeesh
,
G.
, and
Reddy
,
K. P. J.
,
2006
, “
Simultaneous Measurement of Aerodynamic and Heat Transfer Data for Large Angle Blunt Cones in Hypersonic Shock Tunnel
,”
Sadhana
,
31
(
5
), pp.
557
581
.10.1007/BF02715914
15.
Sahoo
,
N.
, and
Peetala
,
R. K.
,
2010
, “
Transient Temperature Data Analysis for a Supersonic Flight Test
,”
ASME J. Heat Transfer
,
132
(
8
), p. 0
84503
.10.1115/1.4001128
16.
Nanda
,
S. R.
,
Kulkarni
,
V.
,
Sahoo
,
N.
, and
Menezes
,
V.
,
2019
, “
An Innovative Approach for Prediction of Aerodynamic Coefficients in Shock Tunnel Testing With Soft Computing Techniques
,”
Measurement
,
134
, pp.
773
780
.10.1016/j.measurement.2018.11.007
17.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2010
, “
Fast Response Surface Temperature Sensor for Hypersonic Vehicles
,”
Instrum. Exp. Tech.
,
53
(
1
), pp.
153
159
.10.1134/S0020441210010288
18.
Tropea
,
C.
, and
Yarin
,
A. L.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer Science & Business Media
,
Berlin
.
19.
Mohammed
,
H. A.
,
Salleh
,
H.
,
Yusoff
,
M. Z.
, and
Campo
,
A.
,
2010
, “
Thermal Product of Type-E Fast Response Temperature Sensors
,”
J. Therm. Sci.
,
19
(
4
), pp.
364
371
.10.1007/s11630-010-0395-8
20.
Li
,
J.
,
Chen
,
H.
,
Zhang
,
S.
,
Zhang
,
X.
, and
Yu
,
H.
,
2017
, “
On the Response of Coaxial Surface Thermocouples for Transient Aerodynamic Heating Measurements
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
141
148
.10.1016/j.expthermflusci.2017.04.011
21.
Taler
,
J.
,
1996
, “
Theory of Transient Experimental Techniques for Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3733
3748
.10.1016/0017-9310(96)00015-4
22.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2010
, “
Determination of the Effusivity of Different Scratched Coaxial Temperature Sensors Under Hypersonic Flow
,”
Int. J. Thermophys.
,
31
(
11–12
), pp.
2305
2322
.10.1007/s10765-010-0882-x
23.
Sarma
,
S.
,
Sahoo
,
N.
, and
Unal
,
A.
,
2016
, “
Thin-Film Gauges Using Carbon Nanotubes as Composite Layers
,”
ASME J. Eng. Mater. Technol.
,
138
(
4
), p.
041014
.10.1115/1.4033909
24.
Kant
,
R.
, and
Joshi
,
S. N.
,
2013
, “
Finite Element Simulation of Laser Assisted Bending With Moving Mechanical Load
,”
Int. J. Mechatronics Manuf. Syst.
,
6
(
4
), pp.
351
366
.10.1504/IJMMS.2013.057128
25.
Agarwal
,
S.
, and
Sahoo
,
N.
,
2018
, “
An Experimental Investigation Towards Calibration of a Shock Tube and Stagnation Heat Flux Determination
,”
Int. J. Aerodyn.
,
6
(
1
), pp.
18
40
.10.1504/IJAD.2018.089780
26.
Nanda
,
S. R.
,
Agarwal
,
S.
,
Kulkarni
,
V.
, and
Sahoo
,
N.
,
2017
, “
Shock Tube as an Impulsive Application Device
,”
Int. J. Aerosp. Eng.
,
2017
, p.
2010476
.10.1155/2017/2010476
27.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluid Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
You do not currently have access to this content.