Abstract

Oscillating heat pipes (OHPs) represent a promising passive mechanism for the removal or spreading of heat. While simple to construct, the fluid and thermodynamics of these devices are still poorly understood. There is debate over whether the primary heat transfer mechanism is due to sensible heating of the liquid phase or due to latent heat transfer through phase change. To answer this question, an experimental apparatus was constructed to provide time- and space-resolved temperature and heat transfer data across the face of an operating OHP with HFE-7000 as the working fluid. This experiment utilized temperature sensitive paint (TSP) alongside visual recording of the fluid motion in order to determine the relative latent and sensible contribution to the overall heat transfer. The OHP was tested with input powers ranging from 2.6 W to 10.1 W. It found that latent heat transfer was the dominant heat transfer mechanism, accounting for between 65% and 83% of the total heat transferred in all cases.

References

1.
Mito
,
T.
,
Natsume
,
K.
,
Yanagi
,
N.
,
Tamura
,
H.
,
Tamada
,
T.
,
Shikimachi
,
K.
,
Hirano
,
N.
, and
Nagaya
,
S.
,
2011
, “
Achievement of High Heat Removal Characteristics of Superconducting Magnets With Imbedded Oscillating Heat Pipes
,”
IEEE Trans. Appl. Supercond.
,
21
(
3
), pp.
2470
2473
.10.1109/TASC.2010.2100356
2.
Mangini
,
D.
,
Mameli
,
M.
,
Georgoulas
,
A.
,
Araneo
,
L.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2015
, “
A Pulsating Heat Pipe for Space Applications: Ground and Microgravity Experiments
,”
Int. J. Therm. Sci.
,
95
, pp.
53
63
.10.1016/j.ijthermalsci.2015.04.001
3.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.10.1016/j.ijheatmasstransfer.2011.04.030
4.
Fonseca
,
L. D.
,
Miller
,
F.
, and
Pfotenhauer
,
J.
,
2014
, “
A Helium Based Pulsating Heat Pipe for Superconducting Magnets
,”
AIP Conf. Proc.
,
1573
, pp.
28
35
. https://doi.org/10.1063/1.4860679
5.
Gu
,
J.
,
Kawaji
,
M.
, and
Futamata
,
R.
,
2004
, “
Effects of Gravity on the Performance of Pulsating Heat Pipes
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
370
378
.https://arc.aiaa.org/doi/abs/10.2514/1.3067?journalCode=jtht
6.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
, pp.
817
828
.10.1016/j.ijheatmasstransfer.2015.05.091
7.
Jun
,
S.
, and
Kim
,
S. J.
,
2016
, “
Comparison of the Thermal Performances and Flow Characteristics Between Closed-Loop and Closed-End Micro Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
95
, pp.
890
901
.10.1016/j.ijheatmasstransfer.2015.12.064
8.
Yoon
,
A.
, and
Kim
,
S. J.
,
2017
, “
Characteristics of Oscillating Flow in a Micro Pulsating Heat Pipe: Fundamental-Mode Oscillation
,”
Int. J. Heat Mass Transfer
,
109
, pp.
242
253
.10.1016/j.ijheatmasstransfer.2017.02.003
9.
Youn
,
Y. J.
, and
Kim
,
S. J.
,
2012
, “
Fabrication and Evaluation of a Silicon-Based Micro Pulsating Heat Spreader
,”
Sens. Actuators A
,
174
(
1
), pp.
189
197
.10.1016/j.sna.2011.12.006
10.
Yoon
,
A.
, and
Kim
,
S. J.
,
2018
, “
Understanding of the Thermo-Hydrodynamic Coupling in a Micro Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2018.06.092
11.
Lee
,
J.
, and
Kim
,
S. J.
,
2017
, “
Effect of Channel Geometry on the Operating Limit of Micro Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
107
, pp.
204
212
.10.1016/j.ijheatmasstransfer.2016.11.036
12.
Akachi
,
H.
Structure of a Heat Pipe. U.S. Patent 4,921,041, filed June 15, 1988, and issued May 1, 1990.
13.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2008
, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081501
.10.1115/1.2909081
14.
Zhang
,
Y.
, and
Faghri
,
A.
,
2002
, “
Heat Transfer in a Pulsating Heat Pipe With Open End
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
755
764
.10.1016/S0017-9310(01)00203-4
15.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Effects of Film Evaporation and Condensation on Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
133
(
4
), p.
042901
.10.1115/1.4002780
16.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
17.
Khandekar
,
S.
, and
Groll
,
M.
,
2004
, “
An Insight Into Thermo-Hydrodynamic Coupling in Closed Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
,
43
(
1
), pp.
13
20
.10.1016/S1290-0729(03)00100-5
18.
Mehta
,
B.
, and
Khandekar
,
S.
,
2014
, “
Taylor Bubble-Train Flows and Heat Transfer in the Context of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
79
, pp.
279
290
.10.1016/j.ijheatmasstransfer.2014.08.005
19.
Nikolayev
,
V. S.
,
2011
, “
A Dynamic Film Model of the Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081504
.10.1115/1.4003759
20.
Jo
,
J.
,
Kim
,
J.
, and
Kim
,
S. J.
,
2019
, “
Experimental Investigations of Heat Transfer Mechanisms of a Pulsating Heat Pipe
,”
Energy Conserv. Manag.
,
181
, pp.
331
341
.10.1016/j.enconman.2018.12.027
21.
Al Hashimi
,
H.
,
Hammer
,
C. F.
,
Lebon
,
M. T.
,
Zhang
,
D.
, and
Kim
,
J.
,
2017
, “
Phase-Change Heat Transfer Measurements Using Temperature-Sensitive Paints
,”
ASME J. Heat Transfer
,
140
(
3
), p.
31601
. https://doi.org/10.1115/1.4038135
22.
3M Novec
,
2009
, “
3M Novec 7000 Engineered Fluid
,” 3M Novec, St. Paul, MN.
23.
NIST
,
2018
, “
Ethanol
,” NIST Chemistry WebBook, Gaithersburg, MD, accessed June 21, 2020, https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=4#Thermo-Phase
24.
NIST
,
2018
, “
Acetone
,” NIST Chemistry WebBook, Gaithersburg, MD, accessed June 21, 2020, https://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Mask=4#Thermo-Phase
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
26.
Han
,
Y.
, and
Shikazono
,
N.
,
2009
, “
Measurement of the Liquid Film Thickness in Micro Tube Slug Flow
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
842
853
.10.1016/j.ijheatfluidflow.2009.02.019
27.
Tkachenko
,
N. V.
,
2006
, “
Optical Measurements
,”
Optical Spectroscopy
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
61
87
.
You do not currently have access to this content.