Abstract

In this study, the combined influence of fluid viscoelasticity and inertia on the flow and heat transfer characteristics of a circular cylinder in the steady laminar flow regime have been studied numerically. The momentum and energy equations together with an appropriate viscoelastic constitutive equation have been solved numerically using the finite volume method over the following ranges of conditions: Reynolds number, 0.1Re20; elasticity number (= Wi/Re, where Wi is the Weissenberg number), 0El0.5; Prandtl number, 10Pr100 for Oldroyd-B and finitely extensible nonlinear elastic-Peterlin (FENE-P) (with two values of the chain extensibility parameter L2, namely 10 and 100) viscoelastic fluid models including the limiting case of Newtonian fluids (El=0). New extensive results are presented and discussed in terms of the streamline and isotherm profiles, drag coefficient, distribution of the local and surface averaged Nusselt number. Within the range of conditions embraced here, the separation of boundary layers (momentum and thermal) is seen to be completely suppressed in an Oldroyd-B fluid whereas it is accelerated for a FENE-P fluid in comparison with that seen for a Newtonian fluid otherwise under identical conditions. At a fixed elasticity number, both the drag coefficient and average Nusselt number are seen to be independent of the Reynolds number beyond a critical value for an Oldroyd-B fluid. In contrast, the drag coefficient decreases and the average Nusselt number increases with Reynolds number for a FENE-P fluid at a constant value of the elasticity number. Finally, a simple correlation for the average Nusselt number for a FENE-P fluid is presented which facilitates the interpolation of the present results for the intermediate values of the governing parameters and/or its a priori estimation in a new application.

References

1.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders: Volume 1: Fundamentals
,
Oxford University Press
, New York.
2.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders: Volume 2: Applications
,
Oxford University Press, New York
.
3.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
, 2nd ed.,
Wiley-Interscience, New York
.
4.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2011
,
Non-Newtonian Flow and Applied Rheology: Engineering Applications
, 2nd ed.,
Butterworth-Heinemann, Oxford, UK
.
5.
Schramm
,
L. L.
,
2006
,
Emulsions, Foams, and Suspensions: Fundamentals and Applications
, John
Wiley & Sons, New York.
6.
Denn
,
M. M.
,
2008
,
Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer
,
Cambridge University Press
, New York.
7.
McClements
,
D. J.
,
2015
,
Food Emulsions: Principles, Practices, and Techniques
, 3rd ed.,
CRC Press
, Boca Raton, FL.
8.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
,
1960
, “
Momentum and Heat Transfer in Laminar Boundary-Layer Flows of non-Newtonian Fluids Past External Surfaces
,”
AIChE J.
,
6
(
2
), pp.
312
317
.10.1002/aic.690060227
9.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
,
1965
, “
On Solution of Two-Dimensional Boundary-Layer Flow Equations for Non-Newtonian Power-Law Fluid
,”
Chem. Eng. Sci
,.,
20
(
2
), pp.
101
105
.10.1016/0009-2509(65)85003-5
10.
Shah
,
M. J.
,
Petersen
,
E. E.
, and
Acrivos
,
A.
,
1962
, “
Heat Transfer From a Cylinder to a Power-Law non-Newtonian Fluid
,”
AIChE J.
,
8
(
4
), pp.
542
549
.10.1002/aic.690080425
11.
Shenoy
,
A.
,
2018
,
Heat Transfer to Non-Newtonian Fluids: Fundamentals and Applications
,
Wiley-VCH
, Weinheim, Germany.
12.
Chhabra
,
R. P.
,
2011
, “
Fluid Flow and Heat Transfer From Circular and Noncircular Cylinders Submerged in Non-Newtonian Liquids
,”
Adv. Heat Transfer
,
43
, pp.
289
417
.
13.
D'Alessio
,
S. J. D.
, and
Pascal
,
J. P.
,
1996
, “
Steady Flow of a Power-Law Fluid Past a Cylinder
,”
Acta Mech.
,
117
, pp.
87
100
.10.1007/BF01181039
14.
Chhabra
,
R. P.
,
Soares
,
A. A.
, and
Ferreira
,
J. M.
,
2004
, “
Steady Non-Newtonian Flow Past a Circular Cylinder
,”
Acta. Mech.
,
172
(
1–2
), pp.
1
16
.10.1007/s00707-004-0154-6
15.
Soares
,
A. A.
,
Ferreira
,
J. M.
, and
Chhabra
,
R. P.
,
2005
, “
Flow and Forced Convection Heat Transfer in Crossflow of Non-Newtonian Fluids Over a Circular Cylinder
,”
Ind. Eng. Chem. Res.
,
44
(
15
), pp.
5815
5827
.10.1021/ie0500669
16.
Sivakumar
,
P.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2006
, “
Effect of Power-Law Index on Critical Parameters for Power-Law Flow Across an Unconfined Circular Cylinder
,”
Chem. Eng. Sci.
,
61
(
18
), pp.
6035
6046
.10.1016/j.ces.2006.05.031
17.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Steady Forced Convection Heat Transfer From a Heated Circular Cylinder to Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
977
990
.10.1016/j.ijheatmasstransfer.2006.08.008
18.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
A Numerical Study of the Steady Forced Convection Heat Transfer From an Unconfined Circular Cylinder
,”
Heat Mass Transfer
,
43
(
7
), pp.
639
648
.10.1007/s00231-006-0155-1
19.
Patnana
,
V. K.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2009
, “
Two-Dimensional Unsteady Flow of Power-Law Fluids Over a Cylinder
,”
Chem. Eng. Sci.
,
64
(
12
), pp.
2978
2999
.10.1016/j.ces.2009.03.029
20.
Patnana
,
V. K.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2010
, “
Two-Dimensional Unsteady Forced Convection Heat Transfer in Power-Law Fluids From a Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4152
4167
.10.1016/j.ijheatmasstransfer.2010.05.038
21.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Effect of Blockage on Heat Transfer From a Cylinder to Power Law Liquids
,”
Chem. Eng. Sci.
,
62
, pp.
4729
4741
.10.1016/j.ces.2007.06.002
22.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Two-Dimensional Steady Poiseuille Flow of Power-Law Fluids Across a Circular Cylinder in a Plane Confined Channel: Wall Effects and Drag Coefficients
,”
Ind. Eng. Chem. Res.
,
46
(
11
), pp.
3820
3840
.10.1021/ie070166+
23.
Rao
,
M. K.
,
Sahu
,
A. K.
, and
Chhabra
,
R. P.
,
2011
, “
Effect of Confinement on Power-Law Fluid Flow Past a Circular Cylinder
,”
Pol. Eng. Sci.
,
51
(
10
), pp.
2044
2065
.10.1002/pen.21987
24.
Mossaz
,
S.
,
Jay
,
P.
, and
Magnin
,
A.
,
2012
, “
Non-Circulating and Circulating Inertia Flows of a Viscoplastic Fluid Around a Cylinder
,”
J. Non-Newtonian Fluid Mech.
,
177
, pp.
64
75
.10.1016/j.jnnfm.2012.04.008
25.
Patel
,
S. A.
, and
Chhabra
,
R. P.
,
2013
, “
Steady Flow of Bingham Plastic Fluids Past an Elliptical Cylinder
,”
J. Non-Newtonian Fluid Mech.
,
202
, pp.
32
53
.10.1016/j.jnnfm.2013.09.006
26.
Nirmalkar
,
N.
,
Bose
,
A.
, and
Chhabra
,
R. P.
,
2014
, “
Free Convection From a Heated Circular Cylinder in Bingham Plastic Fluids
,”
Int. J. Ther. Sci.
,
83
, pp.
33
44
.10.1016/j.ijthermalsci.2014.04.004
27.
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2014
, “
Momentum and Heat Transfer From a Heated Circular Cylinder in Bingham Plastic Fluids
,”
Int. J. Heat Mass Transfer
,
70
, pp.
564
577
.10.1016/j.ijheatmasstransfer.2013.11.034
28.
Alves
,
M. A.
,
Pinho
,
F. T.
, and
Oliveira
,
P. J.
,
2001
, “
The Flow of Viscoelastic Fluids Past a Cylinder: Finite Volume High-Resolution Methods
,”
J. Non-Newtonian Fluid Mech.
,
97
(
2–3
), pp.
207
232
.10.1016/S0377-0257(00)00198-1
29.
Hulsen
,
M. A.
,
Fattal
,
R.
, and
Kupferman
,
R.
,
2005
, “
Flow of Viscoelastic Fluids Past a Cylinder at High Weissenberg Number: Stabilized Simulations Using Matrix Algorithms
,”
J. Non-Newtonian Fluid Mech.
,
127
(
1
), pp.
27
39
.10.1016/j.jnnfm.2005.01.002
30.
Hu
,
H. H.
, and
Joseph
,
D. D.
,
1990
, “
Numerical Simulation of Viscoelastic Flow Past a Cylinder
,”
J. Non-Newtonian Fluid Mech.
,
37
(
2–3
), pp.
347
377
.10.1016/0377-0257(90)90012-Z
31.
Oliveira
,
P. J.
,
2001
, “
Method for Time-Dependent Simulations of Viscoelastic Flows: Vortex Shedding Behind Cylinder
,”
J. Non-Newtonian Fluid Mech.
,
101
(
1–3
), pp.
113
137
.10.1016/S0377-0257(01)00146-X
32.
Richter
,
D.
,
Iaccarino
,
G.
, and
Shaqfeh
,
E. S. G.
,
2010
, “
Simulations of Three-Dimensional Viscoelastic Flows Past a Circular Cylinder at Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
651
, pp.
415
442
.10.1017/S0022112009994083
33.
McKinley
,
G. H.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
,
1993
, “
The Wake Instability in Viscoelastic Flow Past Confined Circular Cylinders
,”
Phil. Trans. R. Soc. Lond. A.
,
344
, pp.
265
304
.10.1098/rsta.1993.0091
34.
Baaijens
,
H. P. W.
,
Peters
,
G. W. M.
,
Baaijens
,
F. P. T.
, and
Meijer
,
H. E. H.
,
1995
, “
Viscoelastic Flow Past a Confined Cylinder of a Polyisobutylene Solution
,”
J. Rheol.
,
39
(
6
), pp.
1243
1277
.10.1122/1.550635
35.
Bird
,
R. B.
,
Curtiss
,
C. F.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory
, 2nd ed.,
Wiley-Interscience, New York
.
36.
Oliveira
,
P. J.
,
Coelho
,
P. M.
, and
Pinho
,
F. T.
,
2004
, “
The Graetz Problem With Viscous Dissipation for FENE-P Fluids
,”
J. Non-Newtonian Fluid Mech.
,
121
(
1
), pp.
69
72
.10.1016/j.jnnfm.2004.04.005
37.
Norouzi
,
M.
,
Daghighi
,
S. Z.
, and
Anwar Bég
,
O.
,
2018
, “
Exact Analysis of Heat Convection of Viscoelastic FENE-P Fluids Through Isothermal Slits and Tubes
,”
Meccanica
,
53
(
4–5
), pp.
817
831
.10.1007/s11012-017-0782-2
38.
Daghighi
,
S. Z.
, and
Norouzi
,
M.
,
2018
, “
Effects of Viscous Dissipation on Heat Convection of Viscoelastic Flow Inside Isothermal Channels and Tubes
,”
Korea-Australia Rheol. J.
,
30
(
4
), pp.
273
292
.10.1007/s13367-018-0026-6
39.
Filali
,
A.
, and
Khezzar
,
L.
,
2013
, “
Numerical Simulation of the Graetz Problem in Ducts With Viscoelastic FENE-P Fluids
,”
Comput. Fluids
,
84
, pp.
1
15
.10.1016/j.compfluid.2013.05.013
40.
Khezzar
,
L.
,
Filali
,
A.
, and
AlShehhi
,
M.
,
2014
, “
Flow and Heat Transfer of FENE-P Fluids in Ducts of Various Shapes: Effect of Newtonian Solvent Contribution
,”
J. Non-Newtonian Fluid Mech.
,
207
, pp.
7
20
.10.1016/j.jnnfm.2014.03.003
41.
Whalley
,
R. D.
,
Abed
,
W. M.
,
Dennis
,
D. J. C.
, and
Poole
,
R. J.
,
2015
, “
Enhancing Heat Transfer at the Micro-Scale Using Elastic Turbulence
,”
Theor. App. Mech. Lett.
,
5
(
3
), pp.
103
106
.10.1016/j.taml.2015.03.006
42.
Abed
,
W. M.
,
Whalley
,
R. D.
,
Dennis
,
D. J. C.
, and
Poole
,
R. J.
,
2016
, “
Experimental Investigation of the Impact of Elastic Turbulence on Heat Transfer in a Serpentine Channel
,”
J. Non-Newtonian Fluid Mech.
,
231
, pp.
68
78
.10.1016/j.jnnfm.2016.03.003
43.
Tatsumi
,
K.
,
Nagasaka
,
W.
,
Kimura
,
R.
,
Shinotsuka
,
N.
,
Kuriyama
,
R.
, and
Nakabe
,
K.
,
2019
, “
Local Flow and Heat Transfer Characteristics of Viscoelastic Fluid in a Serpentine Channel
,”
Int. J. Heat Mass Transfer
,
138
, pp.
432
442
.10.1016/j.ijheatmasstransfer.2019.03.173
44.
Li
,
D.-Y.
,
Zhang
,
H.
,
Cheng
,
J.-P.
,
Li
,
X.-B.
,
Li
,
F.-C.
,
Qian
,
S.
, and
Joo
,
S. W.
,
2017
, “
Numerical Simulation of Heat Transfer Enhancement by Elastic Turbulence in a Curvy Channel
,”
Microfluid. Nanofluid.
, 21, pp.
21
25
.
45.
Zhang
,
H.-N.
,
Li
,
D.-Y.
,
Li
,
X.-B.
,
Cai
,
W.-H.
, and
Li
,
F.-C.
,
2017
, “
Numerical Simulation of Heat Transfer Process of Viscoelastic Fluid Flow at High Weissenberg Number by Log-Conformation Reformulation
,”
ASME J. Fluids Eng.
,
139
, p.
091402
.10.1115/1.4036592
46.
James
,
D. F.
, and
Acosta
,
A. J.
,
1970
, “
The Laminar Flow of Dilute Polymer Solutions Around Circular Cylinders
,”
J. Fluid Mech.
,
42
(
2
), pp.
269
288
.10.1017/S0022112070001258
47.
Delvaux
,
V.
, and
Crochet
,
M. J.
,
1990
, “
Numerical Prediction of Anomalous Transport Properties in Viscoelastic Flow
,”
J. Non-Newtonian Fluid Mech.
,
37
(
2–3
), pp.
297
315
.10.1016/0377-0257(90)90010-9
48.
Warner
,
H. R.
,
1972
, “
Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells
,”
Ind. Eng. Chem. Fund.
,
11
(
3
), pp.
379
387
.10.1021/i160043a017
49.
Bird
,
R. B.
,
Dotson
,
P. J.
, and
Johnson
,
N. L.
,
1980
, “
Polymer Solution Rheology Based on a Finitely Extensible Bead-Spring Chain Model
,”
J. Non-Newtonian Fluid Mech.
,
7
(
2–3
), pp.
213
235
.10.1016/0377-0257(80)85007-5
50.
Pimenta
,
F.
, and
Alves
,
M. A.
,
2018
, “
rheoTool
,” accessed Feb. 19, 2020, https://github.com/fppimenta/rheoTool
51.
Alves
,
M. A.
,
Oliveira
,
P. J.
, and
Pinho
,
F. T.
,
2003
, “
A Convergent and Universally Bounded in-Terpolation Scheme for the Treatment of Advection
,”
Int. J. Numer. Meth. Fluids
,
41
(
1
), pp.
47
75
.10.1002/fld.428
52.
Ajiz
,
M.
, and
Jennings
,
A.
,
1984
, “
A Robust Incomplete Cholesky-Conjugate Gradient Algorithm
,”
J. Numer. Methods Eng.
,
20
(
5
), pp.
949
966
.10.1002/nme.1620200511
53.
Lee
,
J.
,
Zhang
,
J.
, and
Lu
,
C.-C.
,
2003
, “
Incomplete LU Preconditioning for Large Scale Dense Complex Linear Systems From Electromagnetic Wave Scattering Problems
,”
J. Non-Newtonian Fluid Mech.
,
185
, pp.
158
175
.10.1016/S0021-9991(02)00052-9
54.
Fattal
,
R.
, and
Kupferman
,
R.
,
2004
, “
Constitutive Laws for the Matrix-Logarithm of the Conformation Tensor
,”
J. Non-Newtonian Fluid Mech.
,
123
(
2–3
), pp.
281
285
.10.1016/j.jnnfm.2004.08.008
55.
Pimenta
,
F.
, and
Alves
,
M. A.
,
2017
, “
Stabilization of an Open-Source Finite Volume Solver for Viscoelastic Fluid Flows
,”
J. Non-Newtonian Fluid Mech.
,
239
, pp.
85
104
.10.1016/j.jnnfm.2016.12.002
56.
Oliveira
,
P. J.
,
2002
, “
An Exact Analytical Solution for Tube and Slit Flow of a FENE-P Fluid
,”
Acta Mech.
,
158
(
3–4
), pp.
157
167
.10.1007/BF01176906
57.
Teixeira
,
R. E.
,
Babcock
,
H. P.
,
Shaqfeh
,
E. S. G.
, and
Chu
,
S.
,
2005
, “
Shear Thinning and Tumbling Dynamics of Single Polymers in the Flow-Gradient Plane
,”
Macromolecules
,
38
(
2
), pp.
581
592
.10.1021/ma048077l
58.
Rydera
,
J. F.
, and
Yeomans
,
J. M.
,
2006
, “
Shear Thinning in Dilute Polymer Solutions
,”
J. Chem. Phys.
,
125
, pp.
19406
19412
.10.1063/1.2387948
59.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
,
11
, pp.
199
264
.10.1016/S0065-2717(08)70075-3
You do not currently have access to this content.