Abstract

To understand the process-microstructure relationships in additive manufacturing (AM), it is necessary to predict the solidification characteristics in the melt pool. This study investigates the influence of Marangoni driven fluid flow on the predicted melt pool geometry and solidification conditions using a continuum finite volume model. A calibrated laser absorptivity was determined by comparing the model predictions (neglecting fluid flow) against melt pool dimensions obtained from single laser melt experiments on a nickel super alloy 625 (IN625) plate. Using this calibrated efficiency, predicted melt pool geometries agree well with experiments across a range of process conditions. When fluid mechanics is considered, a surface tension gradient recommended for IN625 tends to overpredict the influence of convective heat transfer, but the use of an intermediate value reported from experimental measurements of a similar nickel super alloy produces excellent experimental agreement. Despite its significant effect on the melt pool geometry predictions, fluid flow was found to have a small effect on the predicted solidification conditions compared to processing conditions. This result suggests that under certain circumstances, a model only considering conductive heat transfer is sufficient for approximating process-microstructure relationships in laser AM. Extending the model to multiple laser passes further showed that fluid flow also has a small effect on the solidification conditions compared to the transient variations in the process. Limitations of the current model and areas of improvement, including uncertainties associated with the phenomenological model inputs are discussed.

References

1.
Kirka
,
M. M.
,
Unocic
,
K. A.
,
Raghavan
,
N.
,
Medina
,
F.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties
,”
JOM
,
68
(
3
), pp.
1012
1020
.10.1007/s11837-016-1812-6
2.
Raghavan
,
N.
,
Simunovic
,
S.
,
Dehoff
,
R. R.
,
Plotkowski
,
A.
,
Turner
,
J.
,
Kirka
,
M. M.
, and
Babu
,
S. S.
,
2017
, “
Localized Melt-Scan Strategy for Site Specific Control of Grain Size and Primary Dendrite Arm Spacing in Electron Beam Additive Manufacturing Localized Melt-Scan Strategy for Site Specific Control of Grain Size and Primary Dendrite Arm Spacing in Electron
,”
Acta Mater.
,
140
(
17
), pp.
375
387
.10.1016/j.actamat.2017.08.038
3.
Dehoff
,
R. R.
,
Kirka
,
M. M.
,
Sames
,
W. J.
,
Bilheux
,
H.
,
Tremsin
,
A. S.
,
Lowe
,
L. E.
, and
Babu
,
S. S.
,
2015
, “
Site Specific Control of Crystallographic Grain Orientation Through Electron Beam Additive Manufacturing
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
931
938
.10.1179/1743284714Y.0000000734
4.
Raghavan
,
N.
,
Dehoff
,
R.
,
Pannala
,
S.
,
Simunovic
,
S.
,
Kirka
,
M.
,
Turner
,
J.
,
Carlson
,
N.
, and
Babu
,
S. S.
,
2016
, “
Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing
,”
Acta Mater.
,
112
, pp.
303
314
.10.1016/j.actamat.2016.03.063
5.
Kirka
,
M. M.
,
Lee
,
Y.
,
Greeley
,
D. A.
,
Okello
,
A.
,
Goin
,
M. J.
,
Pearce
,
M. T.
, and
Dehoff
,
R. R.
,
2017
, “
Strategy for Texture Management in Metals Additive Manufacturing
,”
JOM
,
69
(
3
), pp.
523
531
.10.1007/s11837-017-2264-3
6.
Hunt
,
J. D.
,
1984
, “
Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic
,”
Mater. Sci. Eng.
,
65
(
1
), pp.
75
83
.10.1016/0025-5416(84)90201-5
7.
Gäumann
,
M.
,
Bezençon
,
C.
,
Canalis
,
P.
, and
Kurz
,
W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing-Microstructure Maps
,”
Acta Mater.
,
49
(
6
), pp.
1051
1062
.10.1016/S1359-6454(00)00367-0
8.
Frederick
,
C. L.
,
Plotkowski
,
A.
,
Kirka
,
M. M.
,
Haines
,
M.
,
Staub
,
A.
,
Schwalbach
,
E. J.
,
Cullen
,
D.
, and
Babu
,
S. S.
,
2018
, “
Geometry-Induced Spatial Variation of Microstructure Evolution During Selective Electrong Beam Melting of Rene-N5
,”
Metall. Mater. Trans. A
,
49
(
10
), pp.
5080
5096
.10.1007/s11661-018-4793-y
9.
Lewandowski
,
J. J.
, and
Seifi
,
M.
,
2016
, “
Metal Additive Manufacturing: A Review of Mechanical Properties
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
151
186
.10.1146/annurev-matsci-070115-032024
10.
Catchpole-Smith
,
S.
,
Aboulkhair
,
N.
,
Parry
,
L.
,
Tuck
,
C.
,
Ashcroft
,
I. A.
, and
Clare
,
A.
,
2017
, “
Fractal Scan Strategies for Selective Laser Melting of ‘Unweldable’ Nickel Superalloys
,”
Addit. Manuf.
,
15
, pp.
113
122
.10.1016/j.addma.2017.02.002
11.
Dehoff
,
R. R.
,
Kirka
,
M. M.
,
List
,
F. A.
,
Unocic
,
K. A.
, and
Sames
,
W. J.
,
2015
, “
Crystallographic Texture Engineering Through Novel Melt Strategies Via Electron Beam Melting: Inconel 718
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
939
944
.10.1179/1743284714Y.0000000697
12.
Rai
,
A.
,
Helmer
,
H.
, and
Körner
,
C.
,
2017
, “
Simulation of Grain Structure Evolution During Powder Bed Based Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
124
134
.10.1016/j.addma.2016.10.007
13.
Debroy
,
T.
, and
David
,
S. A.
,
1995
, “
Physical Processes in Fusion Welding
,”
Rev. Mod. Phys.
,
67
(
1
), pp.
85
112
.10.1103/RevModPhys.67.85
14.
Paul
,
A.
, and
Debroy
,
T.
,
1988
, “
Free Surface Flow and Heat Transfer in Conduction Mode Laser Welding
,”
Metall. Trans. B
,
19
(
6
), pp.
851
858
.10.1007/BF02651409
15.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process—Powder Sintering Effects
,”
ASME
Paper No. MSEC2012-7253.10.1115/MSEC2012-7253
16.
Raghavan
,
A.
,
Wei
,
H. L.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2013
, “
Heat Transfer and Fluid Flow in Additive Manufacturing
,”
J. Laser Appl.
,
25
(
5
), p.
052006
.10.2351/1.4817788
17.
Knapp
,
G. L.
,
Raghavan
,
N.
,
Plotkowski
,
A.
, and
Debroy
,
T.
,
2019
, “
Experiments and Simulations on Solidification Microstructure for Inconel 718 in Powder Bed Fusion Electron Beam Additive Manufacturing
,”
Addit. Manuf.
,
25
, pp.
511
521
.10.1016/j.addma.2018.12.001
18.
Matthews
,
M.
,
Trapp
,
J.
,
Guss
,
G.
, and
Rubenchik
,
A.
,
2018
, “
Direct Measurements of Laser Absorptivity During Metal Melt Pool Formation Associated With Powder Bed Fusion Additive Manufacturing Processes
,”
J. Laser Appl.
,
30
(
3
), p.
032302
.10.2351/1.5040636
19.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
, Cambridge, UK.
20.
Sahoo
,
P.
,
Debroy
,
T.
, and
McNallan
,
M. J.
,
1988
, “
Surface Tension of Binary Metal-Surface Active Solute Systems Under Conditions Relevant to Welding Metallurgy
,”
Metall. Trans. B
,
19
(
3
), pp.
483
491
.10.1007/BF02657748
21.
Hayashi
,
M.
,
Jakobsson
,
A.
,
Tanaka
,
T.
, and
Seetharaman
,
S.
,
2003
, “
Surface Tension of the Nickel-Based Superalloy CMSX-4
,”
High Temp.—High Pressure
,
35
(
4
), pp.
441
445
.10.1068/htjr123
22.
Li
,
Z.
,
Mills
,
K. C.
,
McLean
,
M.
, and
Mukai
,
K.
,
2005
, “
Measurement of the Density and Surface Tension of Ni-Based Superalloys in the Liquid and Mushy States
,”
Metall. Mater. Trans. B
,
36
(
2
), pp.
247
254
.10.1007/s11663-005-0026-z
23.
Ricci
,
E.
,
Giuranno
,
D.
,
Novakovic
,
R.
,
Matsushita
,
T.
,
Seetharaman
,
S.
,
Brooks
,
R.
,
Chapman
,
L. A.
, and
Quested
,
P. N.
,
2007
, “
Density, Surface Tension, and Viscosity of CMSX-4® Superalloy
,”
Int. J. Thermophys.
,
28
(
4
), pp.
1304
1321
.10.1007/s10765-007-0257-0
24.
Vinet
,
B.
,
Schneider
,
S.
,
Garandet
,
J. P.
,
Marie
,
B.
,
Drevet
,
B.
, and
Egry
,
I.
,
2004
, “
Surface Tension Measurements on CMSX-4 Superalloy by the Drop-Weight and Oscillating-Drop Methods
,”
Int. J. Thermophys.
,
25
(
6
), pp.
1889
1903
.10.1007/s10765-004-7743-4
25.
Higuchi
,
K.
,
Fecht
,
H. J.
, and
Wunderlich
,
R. K.
,
2007
, “
Surface Tension and Viscosity of the Ni-Based Superalloy CMSX-4 Measured by the Oscillating Drop Method in Parabolic Flight Experiments
,”
Adv. Eng. Mater.
,
9
(
5
), pp.
349
354
.10.1002/adem.200600277
26.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1987
, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I: Model Formulation
,”
Int. J. Heat Mass Transfer
,
30
(
10
), pp.
2161
2170
.10.1016/0017-9310(87)90094-9
27.
Carman
,
P. C.
,
1937
, “
Fluid Flow Through Granular Beds
,”
Trans. Inst. Chem. Eng.
,
15
, pp.
150
167
.
28.
Carman
,
P. C.
,
1939
, “
Permeability of Saturated Sands, Soils and Clays
,”
J. Agric. Sci.
,
29
(
2
), pp.
262
273
.10.1017/S0021859600051789
29.
Kozeny
,
J.
,
1927
, “
Ueber Kapillare Leitung des Wassers im Boden
,”
Sitzungsber. Akad. Wiss., Wien
,
136
, pp.
271
306
.
30.
Hu
,
Y. L.
,
Lin
,
X.
,
Yu
,
X. B.
,
Xu
,
J. J.
,
Lei
,
M.
, and
Huang
,
W. D.
,
2017
, “
Effect of Ti Addition on Cracking and Microhardness of Inconel 625 During the Laser Solid Forming Processing
,”
J. Alloys Compd.
,
711
, pp.
267
277
.10.1016/j.jallcom.2017.03.355
31.
Saldi
,
Z. S.
,
Kidess
,
A.
,
Kenjereš
,
S.
,
Zhao
,
C.
,
Richardson
,
I. M.
, and
Kleijn
,
C. R.
,
2013
, “
Effect of Enhanced Heat and Mass Transport and Flow Reversal During Cool Down on Weld Pool Shapes in Laser Spot Welding of Steel
,”
Int. J. Heat Mass Transfer
,
66
, pp.
879
888
.10.1016/j.ijheatmasstransfer.2013.07.085
32.
Zhang
,
W.
,
Kim
,
C.-H.
, and
DebRoy
,
T.
,
2004
, “
Heat and Fluid Flow in Complex Joints During Gas Metal Arc Welding—Part I: Numerical Model of Fillet Welding
,”
J. Appl. Phys.
,
95
(
9
), pp.
5210
5219
.10.1063/1.1699485
33.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.10.1016/j.actamat.2017.05.061
34.
Rösler
,
F.
, and
Brüggemann
,
D.
,
2011
, “
Shell-and-Tube Type Latent Heat Thermal Energy Storage: Numerical Analysis and Comparison With Experiments
,”
Heat Mass Transfer
,
47
(
8
), pp.
1027
1033
.10.1007/s00231-011-0866-9
35.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
36.
Al-Taha
,
Z. Y.
,
2008
, “
Investigation Into Laser Re-Melting of Inconel 625 HVOF Coating Blended With WC
,”
Ph.D. dissertation
, Dublin City University, Dublin, Ireland.http://doras.dcu.ie/2379/
37.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
361
.10.1063/1.168744
38.
Heigel
,
J. C.
, and
Lane
,
B. M.
,
2018
, “
Measurement of the Melt Pool Length During Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051012
.10.1115/1.4037571
39.
Ghosh
,
S.
,
Ma
,
L.
,
Levine
,
L. E.
,
Ricker
,
R. E.
,
Stoudt
,
M. R.
,
Heigel
,
J. C.
, and
Guyer
,
J. E.
,
2018
, “
Single Track Melt Pool Measurements and Microstructures in Inconel 625
,”
JOM
,
70
(
6
), pp.
1011
1016
.10.1007/s11837-018-2771-x
40.
Abramoff
,
M. D.
,
Magalhaes
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing With ImageJ
,”
Biophotonics Int.
,
11
(
7
), pp.
36
42
.
41.
Hann
,
D. B.
,
Iammi
,
J.
, and
Folkes
,
J.
,
2011
, “
A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters
,”
J. Phys. D
,
44
(
44
), p.
445401
.10.1088/0022-3727/44/44/445401
42.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.10.1016/j.jmatprotec.2014.06.005
43.
Ye
,
J.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Crumb
,
M. F.
,
Guss
,
G.
,
Belak
,
J.
, and
Matthews
,
M. J.
,
2019
, “
Energy Coupling Mechanisms and Scaling Behavior Associated With Laser Powder Bed Fusion Additive Manufacturing
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1900185
.10.1002/adem.201900185
44.
Saunders
,
N.
,
Guo
,
Z.
,
Li
,
X.
,
Miodownik
,
A. P.
, and
Schillé
,
J. P.
,
2003
, “
Using JMatPro to Model Materials Properties and Behavior
,”
JOM
,
55
(
12
), pp.
60
65
.10.1007/s11837-003-0013-2
45.
Dinwiddie
,
R. B.
,
Kirka
,
M. M.
,
Lloyd
,
P. D.
,
Dehoff
,
R. R.
,
Lowe
,
L. E.
, and
Marlow
,
G. S.
,
2016
, “
Calibrating IR Cameras for In-Situ Temperature Measurement During the Electron Beam Melt Processing of Inconel 718 and Ti-Al6-V4
,”
Proc. SPIE
9861
, p.
986107
.
46.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
Solid Freeform Fabrication Symposium
, pp.
219
228
.https://www.researchgate.net/publication/282219533_Using_Design_of_Experiments_in_Finite_Element_Modeling_to_Identify_Critical_Variables_for_Laser_Powder_Bed_Fusion
47.
Matthews
,
M. J.
,
Guss
,
G.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Depond
,
P. J.
, and
King
,
W. E.
,
2016
, “
Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes
,”
Acta Mater.
,
114
, pp.
33
42
.10.1016/j.actamat.2016.05.017
48.
Debroy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.10.1016/j.pmatsci.2017.10.001
49.
Sainte-Catherine
,
C.
,
Jeandin
,
M.
,
Kechemair
,
D.
,
Ricaud
,
J.-P.
, and
Sabatier
,
L.
,
1991
, “
Study of Dynamic Absorptivity at 10.6 μm (CO2) and 1.06 μm (Nd-YAG) Wavelengths as a Function of Temperature
,”
J. Phys. IV Colloq.
,
1
(
C7
), pp.
C7
151
C7-157
.10.1051/jp4:1991741
50.
Stump
,
B.
,
Plotkowski
,
A.
, and
Coleman
,
J.
,
2020
, “
Solidification Dynamics in Metal Additive Manufacturing: Analysis of Model Assumptions
,”
Modell. Simul. Mater. Sci. Eng. Rev
.
51.
Mukherjee
,
T.
,
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Dimensionless Numbers in Additive Manufacturing
,”
J. Appl. Phys.
,
121
(
6
), p.
064904
.10.1063/1.4976006
52.
Manvatkar
,
V.
,
De
,
A.
, and
Debroy
,
T.
,
2014
, “
Heat Transfer and Material Flow During Laser Assisted Multi-Layer Additive Manufacturing
,”
J. Appl. Phys.
,
116
(
12
), p.
124905
.10.1063/1.4896751
53.
Sahoo
,
P.
,
Collur
,
M. M.
, and
Debroy
,
T.
,
1988
, “
Effects of Oxygen and Sulfur on Alloying Element Vaporization Rates During Laser Welding
,”
Metall. Trans. B
,
19
(
6
), pp.
967
972
.10.1007/BF02651420
54.
Block-Bolten
,
A.
, and
Eagar
,
T. W.
,
1984
, “
Metal Vaporization From Weld Pools
,”
Metall. Trans. B
,
15
(
3
), pp.
461
469
.10.1007/BF02657376
55.
Lei
,
Y. P.
,
Murakawa
,
H.
,
Shi
,
Y. W.
, and
Li
,
X. Y.
,
2001
, “
Numerical Analysis of the Competitive Influence of Marangoni Flow and Evaporation on Heat Surface Temperature and Molten Pool Shape in Laser Surface Remelting
,”
Comput. Mater. Sci.
,
21
(
3
), pp.
276
290
.10.1016/S0927-0256(01)00143-4
56.
Klassen
,
A.
,
Forster
,
V. E.
, and
Korner
,
C.
,
2017
, “
A Multi-Component Evaporation Model for Beam Melting Processes
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(
2
), pp.
1
22
.10.1088/1361-651X/aa5289
57.
Wei
,
H. L.
,
Mazumder
,
J.
, and
DebRoy
,
T.
,
2015
, “
Evolution of Solidification Texture During Additive Manufacturing
,”
Sci. Rep.
,
5
, p.
16446
.10.1038/srep16446
58.
Forslund
,
R.
,
Snis
,
A.
, and
Larsson
,
S.
,
2019
, “
Analytical Solution for Heat Conduction Due to a Moving Gaussian Heat Flux With Piecewise Constant Parameters
,”
Appl. Math. Modell.
,
66
, pp.
227
240
.10.1016/j.apm.2018.09.018
59.
Schwalbach
,
E. J.
,
Donegan
,
S. P.
,
Chapman
,
M. G.
,
Chaput
,
K. J.
, and
Groeber
,
M. A.
,
2019
, “
A Discrete Source Model of Powder Bed Fusion Additive Manufacturing Thermal History
,”
Addit. Manuf.
,
25
, pp.
485
498
.10.1016/j.addma.2018.12.004
60.
Plotkowski
,
A.
,
Kirka
,
M. M.
, and
Babu
,
S. S.
,
2017
, “
Verification and Validation of a Rapid Heat Transfer Calculation Methodology for Transient Melt Pool Solidification Conditions in Powder Bed Metal Additive Manufacturing
,”
Addit. Manuf.
,
18
, pp.
256
268
.10.1016/j.addma.2017.10.017
You do not currently have access to this content.