Within the framework of scale resolving simulation techniques, this paper considers the application of the stress-blended eddy simulation (SBES) model to pressure side (PS) film cooling in a high-pressure turbine nozzle guide vane. The cooling geometry exhibits two rows of film cooling holes and a trailing edge cutback, fed by the same plenum chamber. The blowing conditions investigated were in the range of coolant-to-mainstream mass flow ratio (MFR) from 1% to 2%. The flow regime resembles that in a real engine (exit isentropic Mach number of Ma2is = 0.6), but also low speed conditions (Ma2is = 0.2) were considered for comparison purposes. The predicted results were validated with measurements of surface adiabatic effectiveness and instantaneous off-wall visualizations of the flow field downstream of cooling holes and cutback slot. The focus is on SBES ability of developing shear layer structures, because of their strong influence on velocity field, entrainment mechanisms and, thus, vane surface temperature. Special attention has been paid to the development and dynamics of coherent unsteadiness, since measured values of shedding frequency were also available for validation. SBES provided significant improvement in capturing the unsteady physics of cooling jet-mainstream interaction. The effects of changes in flow regime and blowing conditions on vortex structures were well predicted along the cutback surface. As regards the cooling holes, the high speed condition made it difficult to match the experimental Kelvin–Helmholtz breakdown in the shear layer, in the case of high velocity jets.

References

1.
Menzies
,
K.
,
2014
, “
Delivering Better Power: The Role of Simulation in Reducing the Environmental Impact of Aircraft Engines
,”
Phil. Trans. R. Soc.
,
A372
(
2022
), p.
20130316
.
2.
Slotnick
,
J.
,
Khodadoust
,
A.
,
Alonso
,
J.
,
Darmofal
,
D.
,
Gropp
,
W.
,
Lurie
,
E.
, and
Mavriplis
,
D.
,
2014
, “
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA/CR–2014-218178
.https://ntrs.nasa.gov/search.jsp?R=20140003093
3.
Spalart
,
P. R.
, and
Venkatakrishnan
,
V.
,
2016
, “
On the Role and Challenges of CFD in the Aerospace Industry
,”
Aeronaut. J.
,
120
(
1223
), pp.
209
232
.
4.
Tafti
,
D. K.
,
He
,
L.
, and
Nagendra
,
K.
,
2014
, “
Large Eddy Simulation for Predicting Turbulent Heat Transfer in Gas Turbines
,”
Phil. Trans. R. Soc.
,
A372
(
2022
), p.
20130322
.
5.
Menter
,
F. R.
,
2015
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD, Version 2.00
,” ANSYS Germany GmbH, Otterfing, Germany, accessed June 15, 2017, https://www.ansys.com/en-in/resource-library/application-brief/best-practice-scale-resolving-simulations-in-ansys-cfd-version-20
6.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2014
, “
Application of Unsteady CFD Methods to Trailing Edge Cutback Film Cooling
,”
ASME J. Turbomach.
,
136
(
12
), p.
121006
.
7.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2015
, “
Modelling the Influence of Vortex Shedding on Trailing Edge Cutback Film Cooling at Different Blowing Ratios
,”
11th European Turbomachinery Conference
, Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-022
.http://www.euroturbo.eu/publications/proceedings-papers/etc2015-022/
8.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling—Part I: Steady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT-2002-30471.
9.
Martini
,
P.
,
Schulz
,
A.
,
Whitney
,
C. F.
, and
Lutum
,
E.
,
2003
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling Downstream of a Slot With Internal Rib Arrays
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
393
401
.
10.
Cakan
,
M.
, and
Taslim
,
M. E.
,
2006
, “
Experimental and Numerical Study of Mass/Heat Transfer on an Airfoil Trailing-Edge Slots and Lands
,”
ASME J. Turbomach.
,
129
(
2
), pp.
281
293
.
11.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling—Part II: Unsteady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT-2002-30472.
12.
Medic
,
G.
, and
Durbin
,
P. A.
,
2005
, “
Unsteady Effects on Trailing Edge Cooling
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
388
392
.
13.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part I: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
14.
Joo
,
J.
, and
Durbin
,
P.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021102
.
15.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Whitney
,
C. F.
,
2005
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
16.
Effendy
,
M.
,
Yao
,
Y. F.
,
Yao
,
J.
, and
Marchant
,
D. R.
,
2016
, “
DES Study of Blade Trailing Edge Cutback Cooling Performance With Various Lip Thicknesses
,”
Appl. Therm. Eng.
,
99
, pp.
434
445
.
17.
Ivanova
,
E.
, and
Laskowski
,
G. M.
,
2014
, “
LES and Hybrid RANS/LES of a Fundamental Trailing Edge Slot
,”
ASME
Paper No. GT2014-25906.
18.
Ivanova
,
E.
,
Ledezma
,
G.
,
Wang
,
G.
, and
Laskowski
,
G. M.
,
2015
, “
Experimental and Numerical Investigations of the Heat Transfer and Flow Field in a Trailing Edge Cooling Geometry—Part 2: LES and Hybrid RANS/LES Study
,”
ASME
Paper No. GT2015-43603.
19.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2010
, “
Large-Eddy Simulations of Trailing-Edge Cutback Film Cooling at Low Blowing Ratio
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
767
775
.
20.
Schneider
,
H.
,
von Terzi
,
D.
, and
Bauer
,
H.-J.
,
2012
, “
Turbulent Heat Transfer and Large Coherent Structures in Trailing-Edge Cutback Film Cooling
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
101
120
.
21.
Schneider
,
H.
,
Von Terzi
,
D. A.
,
Bauer
,
H. J.
, and
Rodi
,
W.
,
2015
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
Int. J. Heat Fluid Flow
,
51
, pp.
110
119
.
22.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072605
.
23.
Ling
,
J.
,
Rossi
,
R.
, and
Eaton
,
J. K.
,
2015
, “
Near Wall Modeling for Trailing Edge Slot Film Cooling
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021103
.
24.
Ke
,
Z.
, and
Wang
,
J.
,
2015
, “
Numerical Investigations of Pulsed Film Cooling on an Entire Turbine Vane
,”
Appl. Therm. Eng.
,
87
, pp.
117
126
.
25.
Bassi
,
F.
,
Fontaneto
,
F.
,
Franchina
,
N.
,
Ghidoni
,
A.
, and
Savini
,
M.
,
2016
, “
Turbine Vane Film Cooling: Heat Transfer Evaluation Using High-Order Discontinuous Galerkin RANS Computations
,”
Int. J. Heat Fluid Flow
,
61
, pp.
610
625
.
26.
Lee
,
S.
,
Rhee
,
D. H.
,
Cha
,
B. J.
, and
Yee
,
K.
,
2016
, “
Film Cooling Performance Improvement With Optimized Hole Arrangement on Pressure Side Surface of Nozzle Guide Vane—Part I: Optimization and Numerical Investigation
,”
ASME
Paper No. GT2016-57975.
27.
Johnson
,
J. J.
,
King
,
P. I.
,
Clark
,
J. P.
, and
Ooten
,
M. K.
,
2014
, “
Genetic Algorithm Optimization of a High-Pressure Turbine Vane Pressure Side Film Cooling Array
,”
ASME J. Turbomach.
,
136
(
1
), p.
011011
.
28.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2007
, “
Experimental and Computational Comparisons of Fan-Shaped Film Cooling on a Turbine Vane Surface
,”
ASME J. Turbomach.
,
129
(
1
), pp.
23
31
.
29.
Naik
,
S.
,
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2014
, “
Multirow Film Cooling Performances of a High Lift Blade and Vane
,”
ASME J. Turbomach.
,
136
(
5
), p.
051003
.
30.
Roy
,
S.
,
Kapadia
,
S.
, and
Heidmann
,
J. D.
,
2003
, “
Film Cooling Analysis Using DES Turbulence Model
,”
ASME
Paper No. GT2003-38140.
31.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2015
, “
Numerical Simulations of the Near-Field Region of Film Cooling Jets Under High Free Stream Turbulence: Application of RANS and Hybrid URANS/Large Eddy Simulation Models
,”
ASME J. Heat Transfer
,
137
(
1
), p.
011701
.
32.
Acharya
,
S.
, and
Leedom
,
D. H.
,
2013
, “
Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011010
.
33.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows With Variable Density Jets
,”
Flow Turbul. Combust.
,
80
(
1
), pp.
119
132
.
34.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
, pp.
37
50
.
35.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
36.
ANSYS
,
2016
, “
ANSYS Fluent Theory Guide, Release 17.0
,”
ANSYS Inc.
,
Canonsburg, PA
.
37.
Menter
,
F. R.
,
2016
, “
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
,”
Sixth HRLM Symposium
, Strasbourg, France, Sept. 26–28, pp.
1
5
.https://hrlm6.sciencesconf.org/118745/document
38.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
39.
ANSYS
, 2016, “
A New Paradigm in Turbulence Modeling for Aerodynamic Simulation
,”
ANSYS Inc.
, Canonsburg, PA.
40.
Barigozzi
,
G.
,
Ravelli
,
S.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2013
, “
Effects of Injection Conditions and Mach Number on Unsteadiness Arising Within Coolant Jets Over a Pressure Side Vane Surface
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1220
1230
.
41.
Abdeh
,
H.
, and
Barigozzi
,
G.
,
2018
, “
A Parametric Investigation of Vane Pressure Side Cutback Film Cooling by Dual Luminophor PSP
,”
Int. J. Heat Fluid Flow
,
69
, pp.
106
116
.
42.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2013
, “
Evaluation of RANS Predictions on a Linear Nozzle Vane Cascade With Trailing Edge Cutback Film Cooling
,”
ASME
Paper No. GT2013-94694.
43.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model
,”
Flow Turbul. Combust.
,
88
(
3
), pp.
431
449
.
You do not currently have access to this content.