This paper presents correlations for the weighted-sum-of-gray-gases (WSGG) model for carbon monoxide based on HITEMP2010. The correlations are valid for pressure path lengths from 0.0001 atm·m up to 10 atm·m, total pressure in the order of 1.0 atm, and for temperatures ranging from 400 K up to 2500 K. Some test cases embodying nonhomogeneous, nonisothermal conditions are presented, and the results for the WSGG model are compared with the line-by-line (LBL) solutions for CO.
Issue Section:
Combustion and Reactive Flows
Keywords:
Radiative heat transfer
References
1.
Denison
, M. K.
, and Webb
, B. W.
, 1995
, “The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media
,” ASME J. Heat Transfer
, 117
(2), pp. 359
–365
.2.
Solovjov
, V. P.
, and Webb
, B. W.
, 1998
, “Radiative Transfer Model Parameters for Carbon Monoxide at High Temperature
,” Int. Heat Transfer Conf.
epub.3.
Solovjov
, V. P.
, and Webb
, B. W.
, 2000
, “SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures
,” J. Quant. Spectrosc. Radiat. Transfer
, 65
(4), pp. 655
–672
.4.
Solovjov
, V. P.
, Andre
, F.
, Lemonnier
, D.
, and Webb
, B. W.
, 2016
, “The Generalized SLW Model, Eurotherm Conference 105: Computational Thermal Radiation in Participating Media V
,” J. Phys.: Conf. Ser.
, 676
, p. 012022.5.
Solovjov
, V. P.
, and Webb
, B. W.
, 2008
, “Multilayer Modeling of Radiative Transfer by SLW and CW Methods in Non-Isothermal Gaseous Media
,” J. Quant. Spectrosc. Radiat. Transfer
, 109
(2), pp. 245
–257
.6.
Solovjov
, V. P.
, and Webb
, B. W.
, 2010
, “Application of CW Local Correction Approach to SLW Modeling of Radiative Transfer in Non-Isothermal Gaseous Media
,” ASME
Paper No. IMECE2002-33886.7.
Solovjov
, V. P.
, and Webb
, B. W.
, 2011
, “Global Spectral Methods in Gas Radiation: The Exact Limit of the SLW Model and Its Relationship to the ADF and FSK Methods
,” ASME J. Heat Transfer
, 133
(4), p. 042701
.8.
Solovjov
, V. P.
, Lemonnier
, D.
, and Webb
, B. W.
, 2011
, “SLW-1 Modeling of Radiative Heat Transfer in Nonisothermal Nonhomogeneous Gas Mixtures With Soot
,” ASME J. Heat Transfer
, 133
(10), p. 102701
.9.
Solovjov
, V. P.
, Andre
, F.
, Lemonnier
, D.
, Webb
, B. W.
, and Vladimir
, P. S.
, 2016
, “The Rank Correlated SLW Model of Gas Radiation in Non-Uniform Media
,” 8th International Symposium on Radiative Transfer
, RAD-16-GR4, Cappadocia, Turkey, June 6–10.10.
Mazumder
, S.
, and Modest
, M. F.
, 2002
, “Application of the Full Spectrum Correlated-k Distribution Approach to Modeling Non-Gray Radiation in Combustion Gases
,” Combust. Flame
, 129
(4), pp. 416
–438
.11.
Modest
, M. F.
, and Zhang
, H.
, 2003
, “Full-Spectrum k-Distribution Correlations for Carbon Dioxide Mixtures
,” J. Thermophys. Heat Transfer
, 17
(2), pp. 259
–263
.12.
Modest
, M. F.
, 2003
, “Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated vs. Scaling Approximation
,” J. Quant. Spectrosc. Radiat. Transfer
, 76
(1), pp. 69
–83
.13.
Solovjov
, V. P.
, and Webb
, B. W.
, 2002
, “Local-Spectrum Correlated Model for Radiative Transfer in Non-Uniform Gas Media
,” J. Quant. Spectrosc. Radiat. Transfer
, 73
(2–5), pp. 361
–373
.14.
Galarça
, M. M.
, Mossi
, A.
, and França
, F. H. R.
, 2011
, “Modification of the Cumulative Wavenumber Method to Compute the Radiative Heat Flux in Non-Uniform Media
,” J. Quant. Spectrosc. Radiat. Transfer
, 112
(3), pp. 384
–393
.15.
Solovjov
, V. P.
, Lemonnier
, D.
, and Webb
, B. W.
, 2013
, “Efficient Cumulative Wavenumber Model of Radiative Transfer in Gaseous Media Bounded by Non-Gray Walls
,” J. Quant. Spectrosc. Radiat. Transfer
, 128
, pp. 2
–9
.16.
Song
, T. H.
, and Viskanta
, R.
, 1986
, “Development of Application of a Spectral-Group Model to Radiative Heat Transfer
,” ASME
Paper No. 86-WA/HT-36.17.
Dorigon
, L. J.
, Duciak
, G.
, Brittes
, R.
, Cassol
, F.
, Galarça
, M.
, and França
, F. H. R.
, 2013
, “WSGG Correlations Based on HITEMP2010 for Computation of Thermal Radiation in Non-Isothermal, Non-Homogeneous H2O/CO2 Mixtures
,” Int. J. Heat Mass Transfer
, 64
, pp. 863
–873
.18.
Cassol
, F.
, Brittes
, R.
, França
, F. H. R.
, and Ezekoye
, O. A.
, 2014
, “Application of the Weighted-Sum-of-Gray-Gases Model for Media Composed of Arbitrary Concentrations of H2O, CO2 and Soot
,” Int. J. Heat Mass Transfer
, 79
, pp. 796
–806
.19.
Centeno
, F. R.
, Brittes
, R.
, França
, F. H. R.
, and Ezekoye
, O. A.
, 2015
, “Evaluation of Gas Radiation Heat Transfer in a 2D Axisymmetric Geometry Using the Line-by-Line Integration and WSGG Models
,” J. Quant. Spectrosc. Radiat. Transfer
, 156
, pp. 1
–11
.20.
Centeno
, F. R.
, Brittes
, R.
, França
, F. H. R.
, and da Silva
, C. V.
, 2016
, “Application of the WSGG Model for the Calculation of Gas–Soot Radiation in a Turbulent Non-Premixed Methane–Air Flame Inside a Cylindrical Combustion Chamber
,” Int. J. Heat Mass Transfer
, 93
, pp. 742
–753
.21.
Johansson
, R.
, Leckner
, B.
, Andersson
, K.
, and Johnsson
, F.
, 2011
, “Account for Variations in the H2O to CO2 Molar Ratio When Modelling Gaseous Radiative Heat Transfer With the Weighted-Sum-of-Grey-Gases Model
,” Combust. Flame
, 158
(5), pp. 893
–901
.22.
Rehfeldt
, S.
, Kuhr
, C.
, Ehmann
, M.
, and Bergins
, C.
, 2011
, “Modeling of Radiative Properties of an Oxyfuel Atmosphere With a Weighted Sum of Gray Gases for Variable Carbon Dioxide and Water Vapor Concentrations
,” Energy Procedia
, 4
, pp. 980
–987
.23.
Kangwanpongpan
, T.
, França
, F. H. R.
, da Silva
, R. C.
, Schneider
, P. S.
, and Krautz
, H. J.
, 2012
, “New Correlations for the Weighted-Sum-of-Gray-Gases Model in Oxy-Fuel Conditions Based on HITEMP 2010 Database
,” Int. J. Heat Mass Transfer
, 55
(25–26), pp. 7419
–7433
.24.
Bordbar
, M. H.
, Węcel
, G.
, and Hyppänen
, T.
, 2014
, “A Line by Line Based Weighted Sum of Gray Gases Model for Inhomogeneous CO2–H2O Mixture in Oxy-Fired Combustion
,” Combust. Flame
, 161
(9), pp. 2435
–2445
.25.
Guo
, J.
, Li
, X.
, Huang
, X.
, Liu
, Z.
, and Zheng
, C.
, 2015
, “A Full Spectrum k-Distribution Based Weighted-Sum-of-Gray-Gases Model for Oxy-Fuel Combustion
,” Int. J. Heat Mass Transfer
, 90
, pp. 218
–226
.26.
Brittes
, R.
, Cassol
, F.
, Centeno
, F. R.
, and França
, F. H. R.
, 2015
, “A Novel WSGG Model Based on Weighted Absorption-Emission Coefficients
,” ASME
Paper No. IMECE2015-52946.27.
Rothman
, L. S.
, Gordon
, I. E.
, Barber
, R. J.
, Dothe
, H.
, Gamache
, R. R.
, Goldman
, A.
, Perevalov
, V. I.
, Tashkun
, S. A.
, and Tennyson
, J.
, 2010
, “HITEMP, the High-Temperature Molecular Spectroscopic Database
,” J. Quant. Spectrosc. Radiat. Transfer
, 111
(15), pp. 2139
–2150
.28.
Siegel
, R.
, and Howell
, J. R.
, 2002
, Thermal Radiation Heat Transfer
, 4th ed., Taylor & Francis
, New York
.29.
Wang
, A.
, and Modest
, M. F.
, 2004
, “Importance of Combined Lorentz-Doppler Broadening in High-Temperature Radiative Heat Transfer Applications
,” ASME J. Heat Transfer
, 126
(5), pp. 858
–861
.30.
Rothman
, L. S.
, Rinsland
, C. P.
, Goldman
, A.
, Massie
, S. T.
, Edwards
, D. P.
, Flaud
, J.-M.
, Perrin
, A.
, Camy-Peyret
, C.
, Dana
, V.
, Mandin
, J.-Y.
, Schroeder
, J.
, Mccann
, A.
, Gamache
, R. R.
, Wattson
, R. B.
, Yoshino
, K. K.
, Chance
, V.
, Jucks
, K. W.
, Brown
, L. R.
, Nemtchinov
, V.
, and Varanasi
, P.
, 1998
, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition
,” J. Quant. Spectrosc. Radiat. Transfer
, 60
(5), pp. 665
–710
.31.
Rivière
, P.
, and Soufiani
, A.
, 2012
, “Updated Band Model Parameters for H2O, CO2, CH4, and CO Radiation at High Temperature
,” Int. J. Heat Mass Transfer
, 55
(13–14), pp. 3349
–3358
.32.
Pearson
, J. T.
, Webb
, B. W.
, Solovjov
, V. P.
, and Ma
, J.
, 2014
, “Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure
,” J. Quant. Spectrosc. Radiat. Transfer
, 138
, pp. 82
–96
.33.
Chu
, H.
, Liu
, F.
, and Zhou
, H.
, 2011
, “Calculations of Gas Thermal Radiation Transfer in One-Dimensional Planar Enclosure Using LBL and SNB Models
,” Int. J. Heat Mass Transfer
, 54
(21–22), pp. 4736
–4745
.34.
Marquardt
, D. W.
, 1963
, “An Algorithm for the Least-Squares Estimation of Nonlinear Parameters
,” SIAM J. Appl. Math
, 11
(2), pp. 431
–441
.Copyright © 2017 by ASME
You do not currently have access to this content.