Thermal bubble nucleation was studied using molecular dynamics for both homogeneous and heterogeneous argon systems using isothermal-isobaric (NPT) and isothermal-isostress (NPzzT) ensembles. Unlike results using NVE and NVT ensembles, no stable nanoscale bubble exists in the NPT ensembles, but instead, the whole system changes into vapor phase. In homogeneous binary systems, reducing the interaction strength between alien atoms and argon atoms significantly decreases the nucleation temperature; however, enhancing the interaction strength only increases the nucleation temperature marginally. For nanoconfined heterogeneous NPzzT ensembles with liquid argon between two solid plates, the nucleation temperature increases as the channel height decreases if the channel height is less than ∼7.63 nm. More interestingly, in this regime, the bubble nucleation temperature could be significantly higher than the corresponding homogeneous nucleation temperature. This observation is different from the common expectation that homogeneous thermal bubble nucleation, as a result of fundamental thermodynamic instability, sets an upper limit for thermal bubble nucleation temperature under a given pressure. However, the result can be understood physically based on the more ordered arrangement of atoms, which corresponds to a higher potential energy barrier.

References

1.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Hemisphere Publishing Corporation
, Washington, DC.
2.
Blower
,
J. D.
,
Keating
,
J. P.
,
Mader
,
H. M.
, and
Phillips
,
J. C.
,
2002
, “
The Evolution of Bubble Size Distributions in Volcanic Eruptions
,”
J. Volcanology and Geothermal Res.
,
120
, pp.
1
23
.10.1016/S0377-0273(02)00404-3
3.
Tsai
,
J. H.
, and
Lin
,
L. W.
,
2002
, “
A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
665
671
.10.1109/JMEMS.2002.802909
4.
Shikida
,
M.
,
Imamura
,
T.
,
Ukai
,
S.
,
Miyaji
,
T.
, and
Sato
,
K.
,
2008
, “
Fabrication of a Bubble-Driven Arrayed Actuator for a Tactile Display
,”
J. Micromech. Microeng.
,
18
(
6
),
p. 065012
.10.1088/0960-1317/18/6/065012
5.
Van Den Broek
,
D. M.
, and
Elwenspoek
,
M.
,
2008
, “
Bubble Nucleation in an Explosive Micro-Bubble Actuator
,”
J. Micromech. Microeng.
,
18
(
6
),
p. 064003
.10.1088/0960-1317/18/6/064003
6.
Furberg
,
R.
,
Palm
,
B.
,
Li
,
S.
,
Toprak
,
M.
, and
Muhammed
,
M.
,
2009
, “
The Use of a Nano- and Microporous Surface Layer to Enhance Boiling in a Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
131
(
10
),
p. 101010
.10.1115/1.3180702
7.
Hendricks
,
T. J.
,
Krishnan
,
S.
,
Choi
,
C.
,
Chang
,
C.-H.
, and
Paul
,
B.
,
2010
, “
Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3357
3365
.10.1016/j.ijheatmasstransfer.2010.02.025
8.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
9.
Chaban
,
V. V.
, and
Prezhdo
,
O. V.
,
2011
, “
Water Boiling inside Carbon Nanotubes: Toward Efficient Drug Release
,”
ACS Nano
,
5
(
7
), pp.
5647
5655
.10.1021/nn201277a
10.
Chaban
,
V. V.
,
Prezhdo
,
V. V.
, and
Prezhdo
,
O. V.
,
2012
, “
Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets
,”
ACS Nano
,
6
(
3
), pp.
2766
2773
.10.1021/nn3002533
11.
Han
,
S.
,
Choi
,
M. Y.
,
Kumar
,
P.
, and
Stanley
,
H. E.
,
2010
, “
Phase Transitions in Confined Water Nanofilms
,”
Nat. Phys.
,
6
(
9
), pp.
685
689
.10.1038/nphys1708
12.
Lin
,
L.
,
Udell
,
K.
, and
Pisano
,
A.
,
1994
, “
Liquid-Vapor Phase Transition and Bubble Formation in Micro Structures
,”
J. Thermal Sci. Eng. Appl.
,
2
(
1
), pp.
52
59
. Available at: http://www.me.berkeley.edu/~lwlin/papers/1994-channel.pdf
13.
Lin
,
L. W.
,
1998
, “
Microscale Thermal Bubble Formation: Thermophysical Phenomena and Applications
,”
Microscale Thermophys. Eng.
,
2
(
2
), pp.
71
85
.10.1080/108939598199991
14.
Peng
,
X. F.
,
Hu
,
H. Y.
, and
Wang
,
B. X.
,
1998
, “
Bubble Formation of Liquid Boiling in Microchannels
,”
Sci. China, Ser. E: Technol. Sci.
,
41
(
4
), pp.
404
410
.10.1007/BF02917012
15.
Zhang
,
J. T.
,
Peng
,
X. F.
, and
Peterson
,
G. P.
,
2000
, “
Analysis of Phase–Change Mechanisms in Microchannels Using Cluster Nucleation Theory
,”
Microscale Thermophys. Eng.
,
4
(
3
), pp.
177
187
.10.1080/10893950050148133
16.
Kinjo
,
T.
, and
Matsumoto
,
M.
,
1998
, “
Cavitation Processes and Negative Pressure
,”
Fluid Phase Equilib
.,
144
(
1–2
), pp.
343
350
.10.1016/S0378-3812(97)00278-1
17.
Park
,
S.
,
Weng
,
J. G.
, and
Tien
,
C. L.
,
2000
, “
Cavitation and Bubble Nucleation Using Molecular Dynamics Simulation
,”
Microscale Thermophys. Eng.
,
4
(
3
), pp.
161
175
.10.1080/10893950050148124
18.
Wu
,
Y. W.
, and
Pan
,
C.
,
2003
, “
A Molecular Dynamics Simulation of Bubble Nucleation in Homogeneous Liquid Under Heating With Constant Mean Negative Pressure
,”
Microscale Thermophys. Eng.
,
7
(
2
), pp.
137
151
.10.1080/10893950390203323
19.
Maruyama
,
S.
, and
Kimura
,
T.
,
2000
, “
A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface
,”
Int. J. Heat Technol.
,
8
, pp.
69
74
. Available at: http://www.photon.t.u-tokyo.ac.jp/~maruyama/papers/99/eurotherm2.pdf
20.
Nagayama
,
G.
,
Tsuruta
,
T.
, and
Cheng
,
P.
,
2006
, “
Molecular Dynamics Simulation on Bubble Formation in a Nanochannel
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4437
4443
.10.1016/j.ijheatmasstransfer.2006.04.030
21.
Okumura
,
H.
, and
Ito
,
N.
,
2003
, “
Nonequilibrium Molecular Dynamics Simulations of a Bubble
,”
Phys. Rev. E
,
67
(
4
), p.
045301(R)
.10.1103/PhysRevE.67.045301
22.
Garrison
,
B. J.
,
Itina
,
T. E.
, and
Zhigilei
,
L. V.
,
2003
, “
Limit of Overheating and the Threshold Behavior in Laser Ablation
,”
Phys. Rev. E
,
68
(
4
), p.
041501
.10.1103/PhysRevE.68.041501
23.
Zahn
,
D.
,
2004
, “
How Does Water Boil?
,”
Phys. Rev. Lett.
,
93
(
22
), p.
227801
.10.1103/PhysRevLett.93.227801
24.
Wang
,
Z.-J.
,
Valeriani
,
C.
, and
Frenkel
,
D.
,
2009
, “
Homogeneous Bubble Nucleation Driven by Local Hot Spots: A Molecular Dynamics Study
,”
J. Phys. Chem. B
,
113
(
12
), pp.
3776
3784
.10.1021/jp807727p
25.
Novak
,
B. R.
,
Maginn
,
E. J.
, and
Mccready
,
M. J.
,
2007
, “
Comparison of Heterogeneous and Homogeneous Bubble Nucleation Using Molecular Simulations
,”
Phys. Rev. B
,
75
(
8
), p.
085413
.10.1103/PhysRevB.75.085413
26.
Novak
,
B. R.
,
Maginn
,
E. J.
, and
Mccready
,
M. J.
,
2008
, “
An Atomistic Simulation Study of the Role of Asperities and Indentations on Heterogeneous Bubble Nucleation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042411
.10.1115/1.2818771
27.
Martyna
,
G. J.
,
Tuckerman
,
M. E.
,
Tobias
,
D. J.
, and
Klein
,
M. L.
,
1996
, “
Explicit Reversible Integrators for Extended Systems Dynamics
,”
Mol. Phys.
,
87
(
5
), pp.
1117
1157
.10.1080/00268979600100761
28.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1991
,
Computer Simulation of Liquids
,
Oxford Science Publications
,
Oxford
, UK.
29.
Yasuoka
,
K.
,
Gao
,
G. T.
, and
Zeng
,
X. C.
,
2000
, “
Molecular Dynamics Simulation of Supersaturated Vapor Nucleation in Slit Pore
,”
J. Chem. Phys.
,
112
(
9
), pp.
4279
4285
.10.1063/1.480973
30.
Kholmurodov
,
K. T.
,
Yasuoka
,
K.
, and
Zeng
,
X. C.
,
2001
, “
Molecular Dynamics Simulation of Supersaturated Vapor Nucleation in Slit Pore. II. Thermostatted Atomic-Wall Model
,”
J. Chem. Phys.
,
114
(
21
), pp.
9578
9584
.10.1063/1.1370057
31.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
,
1999
,
Handbook of Phase Change: Boiling and Condensation
,
Taylor & Francis
,
London
.
32.
Blander
,
M.
, and
Katz
,
J. L.
,
1975
, “
Bubble Nucleation in Liquids
,”
AlChE J.
,
21
(
5
), pp.
833
848
.10.1002/aic.690210502
33.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
Gunsteren
,
W. F. V.
,
Dinola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), pp.
3684
3690
.10.1063/1.448118
34.
Vasserman
,
A. A.
, and
Rabinovich
,
V. A.
,
1967
, “
The Calculation of the Thermodynamic Properties of Liquid Argon
,”
J. Eng. Phys. Thermophys.
,
13
(
2
), pp.
106
113
.10.1007/BF00829152
35.
Stewart
,
R. B.
, and
Jacobsen
,
R. T.
,
1989
, “
Thermodynamic Properties of Argon From the Triple Point to 1200 K With Pressures to 1000 Mpa
,”
J. Phys. Chem. Ref. Data
,
18
(
2
), pp.
639
798
.10.1063/1.555829
36.
Debenedetti
,
P. G.
,
1996
,
Metastable Liquids: Concepts and Principles
,
Princeton University Princeton
,
Princeton, NJ
.
37.
Ho-Young
,
K.
, and
Panton
,
R. L.
,
1985
, “
Tensile Strength of Simple Liquids Predicted by a Model of Molecular Interactions
,”
J. Phys. D: Appl. Phys.
,
18
(
4
), p.
647
–659.10.1088/0022-3727/18/4/009
38.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N. R.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
,
New York
.
39.
Xu
,
D. Y.
,
Leng
,
Y. S.
,
Chen
,
Y. F.
, and
Li
,
D. Y.
,
2009
, “
Water Structures near Charged (100) and (111) Silicon Surfaces
,”
Appl. Phys. Lett.
,
94
(
20
), p.
201901
.10.1063/1.3139745
You do not currently have access to this content.