Experimental work was undertaken to investigate the process by which pool-boiling critical heat flux (CHF) occurs using an IR camera to measure the local temperature and heat transfer coefficients on a heated silicon surface. The wetted area fraction (WF), the contact line length density (CLD), the frequency between dryout events, the lifetime of the dry patches, the speed of the advancing and receding contact lines, the dry patch size distribution on the surface, and the heat transfer from the liquid-covered areas were measured throughout the boiling curve. Quantitative analysis of this data at high heat flux and transition through CHF revealed that the boiling curve can simply be obtained by weighting the heat flux from the liquid-covered areas by WF. CHF mechanisms proposed in the literature were evaluated against the observations.

References

1.
Kutateladze
,
S. S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
, pp.
10
12
.
2.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439, Physics and Mathematics.
3.
Haramura
,
Y.
, and
Katto
,
Y. A.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
, pp.
389
399
.10.1016/0017-9310(83)90043-1
4.
Gaertner
,
R. F.
, and
Westwater
,
J. W.
,
1960
, “
Population of Active Sites in Nucleate Boiling Heat Transfer
,”
Chem. Eng. Prog. Symp
,
56
, pp.
39
48
.
5.
Kirby
,
D. B.
, and
Westwater
,
J. W.
,
1965
, “
Bubble and Vapor Behavior on a Heated Horizontal Plate During Pool Boiling Near Burnout
,”
Chem. Eng. Prog. Symp
,
61
, pp.
238
248
.
6.
Bang
,
I. C.
,
Chang
,
S. H.
, and
Baek
,
W.
,
2005
, “
Visualization of a Principle Mechanism of Critical Heat Flux in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5371
5385
.10.1016/j.ijheatmasstransfer.2005.07.006
7.
Ono
,
A.
, and
Sakashita
,
H.
,
2007
, “
Liquid–Vapor Structure Near Heating Surface at High Heat Flux in Subcooled Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3481
3489
.10.1016/j.ijheatmasstransfer.2007.01.026
8.
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2012
, “
Visualization Study of Critical Heat Flux Mechanism on a Small and Horizontal Copper Heater
,”
Int. J. Multiphase Flow
,
41
, pp.
1
12
.10.1016/j.ijmultiphaseflow.2011.12.006
9.
Theofanous
,
T. G.
,
Dinh
,
T. N.
,
Tu
,
J. P.
, and
Dinh
,
A. T.
,
2002
, “
The Boiling Crisis Phenomenon Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
775
792
.10.1016/S0894-1777(02)00192-9
10.
Theofanous
,
T. G.
,
Dinh
,
T. N.
,
Tu
,
J. P.
, and
Dinh
,
A. T.
,
2002
, “
The Boiling Crisis Phenomenon Part II: Dryout Dynamics and Burnout
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
793
810
.10.1016/S0894-1777(02)00193-0
11.
Gong
,
S.
,
Ma
,
W.
, and
Dinh
,
T.-N.
,
2011
, “
An Experimental Study of Rupture Dynamics of Evaporating Liquid Films on Different Heater Surfaces
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1538
1547
.10.1016/j.ijheatmasstransfer.2010.11.036
12.
Gong
,
S.
,
Ma
,
W.
, and
Dinh
,
T.-N.
,
2012
, “
Simulation and Validation of the Dynamics of Liquid Films Evaporating on Horizontal Heater Surfaces
,”
Appl. Therm. Eng.
,
48
, pp.
486
494
.10.1016/j.applthermaleng.2012.05.021
13.
Guan
,
C. K.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2011
, “
A New Mechanistic Model for Pool Boiling CHF on Horizontal Surfaces
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3960
3969
.10.1016/j.ijheatmasstransfer.2011.04.029
14.
Nishio
,
S.
, and
Tanaka
,
H.
,
2004
, “
Visualization of Boiling Structures in High Heat-Flux Pool-Boiling
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4559
4568
.10.1016/j.ijheatmasstransfer.2003.07.033
15.
Wayner
,
P. C.
,
Kao
,
Y. K.
, and
LaCroix
,
L. V.
,
1976
, “
The Interline Heat Transfer Coefficient on an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
, pp.
487
492
.10.1016/0017-9310(76)90161-7
16.
Demiray
,
F.
, and
Kim
,
J.
,
2004
, “
Microscale Heat Transfer Measurements During Pool Boiling of FC-72: Effect of Subcooling
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3257
3268
.10.1016/j.ijheatmasstransfer.2004.02.008
17.
Sefiane
,
K.
,
Benielli
,
D.
, and
Steinchen
,
A.
,
1998
, “
A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence
,”
Colloids Surf. A
,
142
, pp.
361
373
.10.1016/S0927-7757(98)00614-1
18.
Nikolayev
,
V. S.
, and
Beysens
,
D. A.
,
1999
, “
Boiling Crisis and Non-Equilibrium Drying Transition
,”
Europhys. Lett.
,
47
(
3
), pp.
345
351
.10.1209/epl/i1999-00395-x
19.
Kandilkar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects Contact Angle and Orientations
,”
ASME J. Heat Transfer
,
123
, pp.
1071
1079
.10.1115/1.1409265
20.
Janecek
,
V.
, and
Nikolayev
,
V. S.
,
2013
, “
Apparent-Contact-Angle Model at Partial Wetting and Evaporation: Impact of Surface Forces
,”
Phys. Rev. E
,
87
, p.
012404
.10.1103/PhysRevE.87.012404
21.
Raj
,
R.
,
Kunkelmann
,
C.
,
Stephan
,
P.
,
Plawsky
,
J.
, and
Kim
,
J.
,
2012
, “
Contact Line Behavior for a Highly Wetting Fluid Under Superheated Conditions
,”
Int. J. Heat Mass Transfer
,
55
, pp.
2664
2675
.10.1016/j.ijheatmasstransfer.2011.12.026
22.
Ajaev
,
V. S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2010
, “
Static and Dynamic Contact Angles of Evaporating Liquids on Heated Surfaces
,”
J. Colloid Interface Sci.
,
342
, pp.
550
558
.10.1016/j.jcis.2009.10.040
23.
Rednikov
,
A. Y.
, and
Colinet
,
P.
,
2011
, “
Truncated Versus Extended Microfilms at a Vapor-Liquid Contact Line on a Heated Substrate
,”
Langmuir
,
27
, pp.
1758
1769
.10.1021/la102065c
24.
Chu
,
I.-C.
,
No
,
H. C.
, and
Song
,
C.-H.
,
2013
, “
Visualization of Boiling Structure and Critical Heat Flux Phenomenon for a Narrow Heating Surface in a Horizontal Pool of Saturated Water
,”
Int. J. Heat Mass Transfer
,
62
, pp.
142
152
.10.1016/j.ijheatmasstransfer.2013.02.067
25.
Chung
,
H. J.
, and
No
,
H. C.
,
2007
, “
A Nucleate Boiling Limitation Model for the Prediction of Pool Boiling CHF
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2944
2951
.10.1016/j.ijheatmasstransfer.2006.12.023
26.
Gerardi
,
C.
, and
Buongiorno
,
J.
,
Hu
,
L.-W.
, and
McKrell
,
T.
,
2011
, “
Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena
,”
Nanoscale Res. Lett.
,
6
, p.
232
.10.1186/1556-276X-6-232
27.
Gerardi
,
C.
, and
Buongiorno
,
J.
,
Hu
,
L.-W.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4185
4192
.10.1016/j.ijheatmasstransfer.2010.05.041
28.
Golobic
,
I.
,
Petkovsek
,
J.
,
Baselj
,
M.
,
Papez
,
A.
, and
Kenning
,
D. B. R.
,
2009
, “
Experimental Determination of Transient Wall Temperature Distributions Close to Growing Vapor Bubbles
,”
Heat Mass Transfer
,
45
(
7
), pp.
857
866
.10.1007/s00231-007-0295-y
29.
Schweizer
,
N.
, and
Stephan
,
P.
,
2009
, “
Experimental Study of Bubble Behavior and Local Heat Flux in Pool Boiling Under Variable Gravity Conditions
,”
Multiphase Sci. Technol.
,
21
(
4
), pp.
329
350
.10.1615/MultScienTechn.v21.i4.40
30.
Kim
,
T. H.
,
Kommer
,
E.
,
Dessiatoun
,
S.
, and
Kim
,
J.
,
2011
, “
Measurement of Two-Phase Flow and Heat Transfer Parameters Using Infrared Thermometry
,”
Int. J. Multiphase Flow
,
40
, pp.
56
67
.10.1016/j.ijmultiphaseflow.2011.11.012
31.
Yaddanapuddi
,
N.
, and
Kim
,
J.
,
2001
, “
Single Bubble Heat Transfer in Saturated Pool Boiling of FC-72
,”
Multiphase Sci. Technol.
,
12
(
3–4
), pp.
47
63
.
32.
Moghaddam
,
S.
, and
Kiger
,
K.
,
2009
, “
Physical Mechanisms of Heat Transfer During Single Bubble Nucleate Boiling of FC-72 Under Saturated Conditions—I. Experimental investigation
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1284
1294
.10.1016/j.ijheatmasstransfer.2008.08.018
33.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Warme und Stoffubertragung
,
30
, pp.
119
125
.10.1007/BF00715018
34.
Rodgers
,
J. L.
, and
Nicewander
,
W. A.
,
1988
, “
Thirteen Ways to Look at the Correlation Coefficient
,”
Am. Stat.
,
42
, pp.
59
66
.10.2307/2685263
35.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1577
1585
.10.1016/j.ijheatfluidflow.2008.07.004
36.
Liaw
,
S. P.
, and
Dhir
,
V. K.
,
1986
, “
Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface
,”
Proceedings of the 8th International Heat Transfer Conference
, Vol.
4
, pp.
2031
2036
.
37.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
, p.
241603
.10.1063/1.4724190
38.
Kim, H., Park, Y., and Buongiorno, J., 2013, “Measurement of Wetted Area Fraction in Subcooled Pool Boiling of Water Using Infrared Thermometry,”
Nuclear Eng. Design
,
264
, pp. 103–110.10.1016/j.nucengdes.2013.07.002
You do not currently have access to this content.