With regard to potential application in pressurized water reactors (PWRs), a nanoporous heated surface was tested in pool boiling of an aqueous solution of boric acid (H3BO3), or borated water (1% volume concentration). The effect of system pressure and surface orientation on pool boiling heat transfer (BHT) was studied. The nanoporous surface consisted of a coating of alumina nanoparticles applied on a 1 cm2 flat copper surface through nanofluid boiling. An uncoated surface in borated water was similarly tested, and due to boric acid deposition, the BHT degraded and the critical heat flux (CHF) enhanced relative to pure water. Also, the possibility of transient pool boiling behavior of borated water was investigated but none was detected. With pressure and orientation variation, the nanoporous surface imposed on borated water showed a trend of further CHF enhancement to the CHF limit produced by the nanoporous surface in pure water. Over the nanoporous surface, the CHF of borated water was increasingly better with decreasing pressure, than that over the plain surface. However, BHT degraded slightly further. Boric acid deposition over the nanoporous surface was believed to be the source of this BHT degradation, but played no apparent role in the further CHF enhancement.

References

1.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
2.
Vassallo
,
P.
,
Kumar
,
R.
, and
D'Amico
,
S.
,
2004
, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.10.1016/S0017-9310(03)00361-2
3.
Tu
,
J. P.
,
Dinh
,
N.
, and
Theofanous
,
T.
,
2004
, “
An Experimental Study of Nanofluid Boiling Heat Transfer
,”
Proceedings of 6th International Symposium on Heat Transfer
, Beijing, China.
4.
Bang
, I
. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int J. Heat Mass Transfer
,
48
, pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
5.
Moreno
,
G.
, Jr.
,
Oldenberg
,
S. J.
, and
You
,
S. M.
,
2005
, “
Pool Boiling Heat Transfer of Alumina-Water, Zinc Oxide-Water and Alumina-Water+Ethylene Glycol Nanofluid
,”
Proceedings of HT2005, ASME Summer Heat Transfer Conference
.
6.
Milanova
,
D.
, and
Kumar
,
R.
,
2005
, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
,
87
, p.
233107
.10.1063/1.2138805
7.
Kim
,
S. J.
,
Bang
, I
. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
8.
Kim
,
H.
, and
Kim
,
M. H.
,
2009
, “
Experimental Study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nanofluids
,”
J. Heat Mass Transfer
,
45
(
7
), pp.
991
998
.10.1007/s00231-007-0318-8
9.
Sefiane
,
K.
,
2006
, “
On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids
,”
Appl. Phys. Lett.
,
89
, p.
044106
.10.1063/1.2222283
10.
Das
,
S. K.
,
Prakash Narayan
,
G.
, and
Baby
,
A. K.
,
2008
, “
Survey of Nucleate Pool Boiling of Nanofluids: The Effect of Particle Size Relative to Roughness
,”
J. Nanopart. Res.
,
10
, pp.
1099
1108
.10.1007/s11051-007-9348-x
11.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
, pp.
265
274
.10.1007/s11051-005-3478-9
12.
Park
,
K.
, and
Jung
,
D.
,
2007
, “
Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4499
4502
.10.1016/j.ijheatmasstransfer.2007.03.012
13.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.10.1016/S0017-9310(02)00348-4
14.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2012
, “
Transient Characteristics of Pool Boiling Heat Transfer in Nanofluids
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051015
.10.1115/1.4005706
15.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
,
Yoo
,
J.
, and
You
,
S. M.
,
2010
, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
972
981
.10.1016/j.ijheatmasstransfer.2009.11.018
16.
Kwark
,
S. M.
,
Moreno
,
G.
,
Kumar
,
R.
,
Moon
,
H.
, and
You
,
S. M.
,
2010
, “
Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4579
4587
.10.1016/j.ijheatmasstransfer.2010.06.035
17.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Fluid Flow
,
53
, pp.
58
67
.10.1016/j.ijheatmasstransfer.2009.10.008
18.
Kwark
,
S. M.
,
Amaya
,
M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2010
, “
Effects of Pressure, Orientation, and Heater Size on Pool Boiling of Water With Nanocoated Heaters
,”
Int. J. Heat Mass Transfer
,
53
, pp.
5199
5208
.10.1016/j.ijheatmasstransfer.2010.07.040
19.
Kwark
,
S. M.
,
Amaya
,
M.
,
Moon
,
H.
, and
You
,
S. M.
,
2011
, “
Effect of Soluble Additives, Boric Acid (H3BO3) and Salt (NaCl), in Pool Boiling Heat Transfer
,”
Nucl. Eng. Technol.
,
43
, pp.
195
204
.10.5516/NET.2011.43.3.195
20.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Process in Heat Transfer Equipment
,
Taylor & Francis
,
Hebron, KY
.
21.
Cichelli
,
M. T.
, and
Bonilla
,
C. F.
,
1945
,
Heat Transfer to Liquids Boiling Under Pressure
,
AIChE
, Vol.
41
, pp.
755
787
.
22.
Nishikawa
,
K.
,
Fujita
,
Y.
, and
Ohta
,
H.
,
1982
, “
Effect of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Memoirs Faculty Eng. Kyushu Univ.
,
42
(
2
), pp.
95
111
.
23.
Watwe
,
A. A.
,
Bar-Cohen
,
A.
, and
McNeil
,
A.
,
1997
, “
Combined Pressure and Subcooling Effects on Pool Boiling From a PPGA Chip Package
,”
ASME J. Electron. Packag.
,
119
(
2
), pp.
95
105
.10.1115/1.2792226
24.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous, Square Pin-Finned Surfaces in FC-72
,”
Int. J. Heat Mass Transfer
,
46
, pp.
23
35
.10.1016/S0017-9310(02)00257-0
25.
McGillis
,
W. R.
,
Carey
,
V. P.
,
Fitch
,
J. S.
, and
Hamburgen
,
W. R.
,
1991
, “
Pool Boiling Enhancement Techniques for Water at Low Pressure
,”
Proceedings, Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, IEEE, Phoenix, AZ, pp.
64
72
.
26.
Mudawar
, I
.
, and
Anderson
,
T. M.
,
1990
, “
Parametric Investigation Into the Effect of Pressure, Subcooling, Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems for High-Power-Density Electronic Chips
,”
J. Electron. Packag.
,
112
, pp.
375
382
.10.1115/1.2904392
27.
Abuaf
,
N.
,
Balck
,
S. H.
, and
Staub
,
F. W.
,
1985
, “
Pool Boiling Performance of Finned Surfaces in R-113
,”
Int. J. Heat Fluid Flow
,
6
(
1
), pp.
23
30
.10.1016/0142-727X(85)90028-1
28.
Bar-Cohen
,
A.
, and
McNeil
,
A.
,
1992
, “
Parametric Effects on Pool Boiling Critical Heat Flux in Dielectric Liquids
,”
Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling
, ASME, Santa Barbara, CA pp. 171–175.
29.
Kazakova
,
E. A.
,
1951
, “
Maximum Heat Transfer to Boiling Water at High Pressures
,”
Eng. Dig.
,
12
(
3
), pp.
81
85
.
30.
Storr
,
A. T.
,
1958
, “
The Effect of Heating Surface Geometry and Orientation on Nucleate Boiling of Subcooled Water
,” M.S. Thesis, Washington University, Sever Institute of Technology, Department of Chemical Engineering, St. Louis, MO.
31.
Marcus
,
B. D.
, and
Dropkin
,
D.
,
1963
, “
The Effect of Surface Configuration on Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
6
, pp.
863
867
.10.1016/0017-9310(63)90069-3
32.
Githinji
,
P. M.
, and
Sabersky
,
R. H.
,
1963
, “
Some Effect of the Orientation of the Heating Surface in Nucleate Boiling
,”
ASME J. Heat Transfer
,
85
(
4
), p.
379
.10.1115/1.3686129
33.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effect on Pool Boiling of Micro-Porous Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
118
, pp.
937
943
.10.1115/1.2822592
34.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Uchida
,
S.
, and
Ohta
,
H.
,
1984
, “
Effect of Surface Configuration on Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1559
1571
.10.1016/0017-9310(84)90268-0
35.
Jung
,
D. S.
,
Venar
,
J. E. S.
, and
Sousa
,
A. C. M.
,
1987
, “
Effects of Enhanced Surfaces and Surface Orientation on Nucleate and Film Boiling Heat Transfer in R-11
,”
Int. J. Heat Mass Transfer
,
30
, pp.
2627
2639
.10.1016/0017-9310(87)90144-X
36.
Beduz
,
C.
,
Scurlock
,
R. G.
, and
Sousa
,
A. J.
,
1988
, “
Angular Dependence of Boiling Heat Transfer Mechanisms in Liquid Nitrogen
,”
Adv. Cryog. Eng.
,
33
, pp.
363
370
.10.1007/978-1-4613-9874-5
37.
Reed
,
S. J.
, and
Mudawar
,
I.
,
1999
, “
Elimination of Boiling Incipience Temperature Drop in Highly Wetting Fluids Using Spherical Contact With a Flat Surface
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2439
2454
.10.1016/S0017-9310(98)00331-7
38.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
39.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Physics and Mathematics, AEC Report No. AECU-44.
40.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.10.1016/j.ijheatfluidflow.2008.07.004
41.
Rohsenow
,
W. M.
,
1962
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
84
, pp.
969
975
.
42.
Brusstar
,
M. J.
,
Merte
,
H.
,
1997
, “
Effects of Heater Surface Orientation on the Critical Heat Flux-II. A Model for Pool and Forced Convection Subcooled Boiling
,”
Int. J. Heat Mass Transfer
,
40
, pp.
4021
4030
.10.1016/S0017-9310(97)00077-X
You do not currently have access to this content.