Three-dimensional simulations of the squealer tip on the GE-E3 blade with eight film cooling holes were carried out. The effect of the rim width and the blowing ratio on the blade tip flow and cooling performance were revealed. Numerical simulations were performed to predict the leakage flow and the tip heat transfer with the k–ɛ model. For the squealer tip, the depth of the cavity is fixed but the rim width varies to form a wide cavity, which can decrease the coolant momentum and the tip leakage flow velocity. This cavity contributes to the improvement of the cooling effect in the tip zone. To investigate the influence on the tip heat transfer by the rim width, numerical simulations were performed as a two-part study: (1) unequal rim width study on the pressure side and the suction side and (2) equal rim width study with rim widths of 0.58%, 1.16%, and 1.74% of the axial chord (0.5 mm, 1 mm, and 1.5 mm, respectively) on both the pressure side rim and the suction side rim. With different rim widths, the effect of different global blowing ratios, i.e., M = 0.5, 1.0 and 1.5, was investigated. It is found that the total heat transfer rate is increasing and the heat transfer rates on the rim surface (RS) rapidly ascend with increasing rim width.

References

1.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
, 1989, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Channel
,
ASME Trans. J. Heat Transfer
,
111
, pp.
73
79
.
2.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
, 1989, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
, pp.
131
138
.
3.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
, 1992, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
4.
Yang
,
T. T.
, and
Diller
,
T. E.
, 1995, “
Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade
,” ASME Paper No. 95-WA/HT-29.
5.
Kim
,
Y. W.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1995, “
A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. Metzger D. E.
,”
ASME J. Turbomach.
,
117
(
1
), pp.
1
10
.
6.
Bunker
,
R. S.
, and
Bailey
,
J. C.
, 2000, “
Blade Tip Heat Transfer and Flow With Chordwise Sealing Strips
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
,
Honolulu
,
HI
, pp.
548
555
.
7.
Bunker
,
R. S.
, and
Bailey
,
J. C.
, 2000, “
An Experimental Study of Heat Transfer and Flow on a Gas Turbine Blade Tip With Various Tip Leakage Sealing Methods
,” 4th ISHMT/ASME Heat and Mass Transfer Conference, India.
8.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, 2000, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.
9.
Azad
,
G. S.
,
Han
,
J. C.
, and
Boyle
,
R. J.
, 2000, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
725
732
.
10.
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Teng
,
S.
, 2000, “
Heat Transfer and Pressure Distribution on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
11.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME Trans. J. Heat Transfer
,
125
, pp.
669
677
.
12.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2002, “
Heat Transfer Coefficient on a Gas Turbine Blade Tip and Near Tip Regions
,” AIAA Paper No. 2002-3012.
13.
Bunker
,
R. S.
, and
Bailey
,
J. C.
, 2001, “
Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer
,” ASME Paper No. GT-2001-0155.
14.
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME Trans. J. Heat Transfer
,
124
(
3
), pp.
452
459
.
15.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
, 2003, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer from a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
1
), pp.
90
96
.
16.
Kwak
,
J. S.
,
Ahn
,
J. C.
, and
Han
,
J. C.
, 2004, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
17.
Mhetras
,
S.
,
Yang
,
H.
, and
Gao
,
Z. H.
, 2006, “
Film-Cooling Effectiveness on Squealer Cavity and Rim Walls of Gas-Turbine Blade Tip
,”
J. Propul. Power
,
22
(
4
), pp.
889
899
.
18.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
L. D.
, 1998, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
753
759
.
19.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
L. D.
, 1998, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
(
4
), pp.
683
693
.
20.
Ameri
,
A. A.
, 2001, “
Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped With a Mean-Camberline Strip
,”
ASME J. Turbomach.
,
123
(
4
), pp.
704
708
.
21.
Acharya
,
S.
,
Yang
,
H.
, and
Ekkad
,
S. V.
, 2002, “
Numerical Simulation of Film Cooling on the Tip of a Gas Turbine Blade
,” ASME Paper No. GT-2002-30553.
22.
Acharya
,
S.
,
Yang
,
H.
, and
Prakash
,
G.
, 2003, “
Numerical Study of Flow and Heat Transfer on a Blade Tip With Different Leakage Reduction Strategies
,” ASME Paper No. GT-2003-38617.
23.
Acharya
,
S.
,
Kramer
,
G.
, and
Moreaux
,
L.
, 2010, “
Squealer Tip Heat Transfer With Film Cooling
,” ASME Paper No. GT-2010-23688.
24.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
, 2004, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film-Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,” ASME Paper No. GT-2004-53199.
25.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
, 2008, “
Numerical Study of Film Cooled Rotor Leading Edge With Tip Clearance in 1-1/2 Turbine Stage
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3066
3081
.
26.
Zhang
,
D. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
, 2009, “
The Influence of Rotating Speed on Film Cooling Characteristics on GE-E3 Blade Tip With Different Tip Configurations
,” ASME Paper No. GT-2009-60295.
27.
Wang
,
J.
,
Zhang
,
D. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
, 2010, “
Influence of Different Shoulder Widths on Film Cooling Characteristics on GE-E3 Blade Tip
,” ASME Paper No. GT-2010-22382.
28.
Wang
,
J.
,
Zeng
,
M.
, and
Wang
,
Q. W.
, 2011, “
Influence of Different Rim Widths on Leakage Flow
,” ASME Paper No. GT-2011-45693.
29.
Yang
,
H.
,
Acharya
,
S.
, and
Ekkad
,
S.
, 2002, “
Numerical Simulation of Flow and Heat Transfer past a Turbine Blade With a Squealer Tip
,” ASME Paper No. GT-2002-30193.
30.
Wilcox
,
D. C.
, 2002,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
,
La Canada, CA
.
31.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 2007,
An Introduction to Computational Fluid Dynamics—The Finite Volume Method
, 2nd ed.,
Longman, Essex
,
England
.
32.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, England
.
33.
Li
,
X.
, and
Wang
,
T.
, 2008, “
Two-Phase Flow Simulation of Mist Film Cooling on Turbine Blades With Conjugate Internal Cooling
,”
ASME Trans. J. Heat Transfer
,
130
, p.
102901
.
34.
Yang
,
D. L.
, and
Feng
,
Z. P.
, 2008, “
Tip Leakage Flow and Heat Transfer Predictions for Turbine Blades
,” ASME Paper No. GT-2007-27728.
You do not currently have access to this content.