Feedstock diffusion and decomposition in the root growth of aligned carbon nanotube (CNT) arrays is discussed. A nondimensional modulus is proposed to differentiate catalyst poisoning controlled growth deceleration from one which is diffusion controlled. It is found that, at present, aligned multiwalled carbon nanotube (MWNT) arrays are usually free of feedstock diffusion resistance. However, for single-walled carbon nanotube (SWNT) arrays, since the intertube distance is much smaller than the mean free path of carbon source (ethanol here), high diffusion resistance in some currently available samples is significantly limiting the growth rate. The method presented here is also able to predict the critical lengths in different chemical vapor deposition (CVD) processes from which CNT arrays begin to meet this diffusion limit, as well as the possible solutions to this diffusion caused growth deceleration. The diffusion of carbon source inside of an array becomes more important when we found ethanol undergoes severe thermal decomposition at the reaction temperature. This means, in a typical alcohol CVD, hydrocarbons and radicals decomposed from ethanol may collide and react with the outer walls of SWNTs before reaching catalyst particles. When flow rate is low and ethanol is thoroughly decomposed, the produced SWNTs contain more soot structures than the SWNTs obtained at higher ethanol flow rate. Understanding the mass transport and reaction inside a SWNT array is helpful to synthesize longer and cleaner SWNTs.

References

1.
Li
,
W. Z.
,
Xie
,
S. S.
,
Qian
,
L. X.
,
Chang
,
B. H.
,
Zou
,
B. S.
,
Zhou
,
W. Y.
,
Zhao
,
R. A.
, and
Wang
,
G.
, 1996, “
Large-Scale Synthesis of Aligned Carbon Nanotubes
,”
Science
,
274
, pp.
1701
1703
.
2.
Rao
,
C. N. R.
,
Sen
,
R.
,
Satishkumar
,
B. C.
, and
Govindaraj
,
A.
, 1998, “
Large Aligned-Nanotube Bundles From Ferrocene Pyrolysis
,” Chem. Commun. pp. 1525–1526.
3.
Ren
,
Z. F.
,
Huang
,
Z. P.
,
Xu
,
J. W.
,
Wang
,
J. H.
,
Bush
,
P.
,
Siegal
,
M. P.
, and
Provencio
,
P. N.
, 1998, “
Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass
,”
Science
,
282
, pp.
1105
1107
.
4.
Fan
,
S. S.
,
Chapline
,
M. G.
,
Franklin
,
N. R.
,
Tombler
,
T. W.
,
Cassell
,
A. M.
, and
Dai
,
H. J.
, 1999, “
Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission properties
,”
Science
,
283
, pp.
512
514
.
5.
Murakami
,
Y.
,
Chiashi
,
S.
,
Miyauchi
,
Y.
,
Hu
,
M. H.
,
Ogura
,
M.
,
Okubo
,
T.
, and
Maruyama
,
S.
, 2004, “
Growth of Vertically Aligned Single-Walled Carbon Nanotube Films on Quartz Substrates and Their Optical Anisotropy
,”
Chem. Phys. Lett.
,
385
, pp.
298
303
.
6.
Hata
,
K.
,
Futaba
,
D. N.
,
Mizuno
,
K.
,
Namai
,
T.
,
Yumura
,
M.
, and
Iijima
,
S.
, 2004, “
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Waited Carbon Nanotubes
,”
Science
,
306
, pp.
1362
1364
.
7.
Zhong
,
G. F.
,
Iwasaki
,
T.
,
Honda
,
K.
,
Furukawa
,
Y.
,
Ohdomari
,
I.
, and
Kawarada
,
H.
, 2005, “
Very High Yield Growth of Vertically Aligned Single-Walled Carbon Nanotubes by Point-Arc Microwave Plasma CVD
,”
Chem. Vap. Deposition
,
11
, pp.
127
130
.
8.
Liu
,
K.
,
Jiang
,
K. L.
,
Feng
,
C.
,
Chen
,
Z.
, and
Fan
,
S. S.
, 2005, “
A Growth Mark Method for Studying Growth Mechanism of Carbon Nanotube Arrays
,”
Carbon
,
43
, pp.
2850
2856
.
9.
Li
,
X.
,
Cao
,
A. Y.
,
Jung
,
Y. J.
,
Vjatai
,
R.
, and
Ajayan
,
P. M.
, 2005, “
Bottom-Up Growth of Carbon Nanotube Multilayers: Unprecedented Growth
,”
Nano Lett.
,
5
, pp.
1997
2000
.
10.
Pinault
,
M.
,
Pichot
,
V.
,
Khodja
,
H.
,
Launois
,
P.
,
Reynaud
,
C.
, and
Mayne-L’Hermite
,
M.
, 2005, “
Evidence of Sequential Lift in Growth of Aligned Multiwalled Carbon Nanotube Multilayers
,”
Nano Lett.
,
5
, pp.
2394
2398
.
11.
Zhu
,
L. B.
,
Xiu
,
Y. H.
,
Hess
,
D. W.
, and
Wong
,
C. P.
, 2005, “
Aligned Carbon Nanotube Stacks by Water-Assisted Selective Etching
,”
Nano Lett.
,
5
, pp.
2641
2645
.
12.
Xiang
,
R.
,
Luo
,
G. H.
,
Qian
,
W. Z.
,
Zhang
,
Q.
,
Wang
,
Y.
,
Wei
,
F.
,
Li
,
Q.
, and
Cao
,
A. Y.
, 2007, “
Encapsulation, Compensation, and Substitution of Catalyst Particles During Continuous Growth of Carbon Nanotubes
,”
Adv. Mater.
,
19
, pp.
2360
2363.
13.
Liu
,
L.
, and
Fan
,
S. S.
, 2001, “
Isotope Labeling of Carbon Nanotubes and a Formation of C-12-C-13 Nanotube Junctions
,”
J. Am. Chem. Soc.
,
123
, pp.
11502
11503
.
14.
Xiang
,
R.
,
Zhang
,
Z.
,
Ogura
,
K.
,
Okawa
,
J.
,
Einarsson
,
E.
,
Miyauchi
,
Y.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2008, “
Vertically Aligned 13C Single-Walled Carbon Nanotubes From No-Flow Alcohol Chemical Vapor Deposition and Their Root Growth Mechanism
,”
Jpn. J. Appl. Phys.
,
47
, pp.
1971
1974
.
15.
Han
,
J. H.
,
Graff
,
R. A.
,
Welch
,
B.
,
Marsh
,
C. P.
,
Franks
,
R.
, and
Strano
,
M. S.
, 2008, “
A Mechanochemical Model of Growth Termination in Vertical Carbon Nanotube Forests
,”
ACS Nano
,
2
, pp.
53
60
.
16.
Deal
,
B. E.
, and
Grove
,
A. S.
, 1965, “
General Relationship for the Thermal Oxidation of Silicon
,”
J. Appl. Phys.
,
36
, pp.
3770
3778
.
17.
Zhu
,
L. B.
,
Hess
,
D. W.
, and
Wong
,
C. P.
, 2006, “
Monitoring Carbon Nanotube Growth by Formation of Nanotube Stacks and Investigation of the Diffusion-Controlled Kinetics
,”
J. Phys. Chem. B
,
110
, pp.
5445
5449
.
18.
Xiang
,
R.
,
Yang
,
Z.
,
Zhang
,
Q.
,
Luo
,
G. H.
,
Qian
,
W. Z.
,
Wei
,
F.
,
Kadowaki
,
M.
,
Einarsson
,
E.
, and
Maruyama
,
S.
, 2008, “
Growth Deceleration of Vertically Aligned Carbon Nanotube Arrays: Catalyst Deactivation or Feedstock Diffusion Controlled?
,”
J. Phys. Chem. C
,
112
, pp.
4892
4896
.
19.
Xiang
,
R.
,
Einarsson
,
E.
,
Okawa
,
J.
,
Thurakitseree
,
T.
,
Murakami
,
Y.
,
Shiomi
,
J.
,
Ohno
,
Y.
, and
Maruyama
,
S.
, 2010, “
Parametric Study of ACCVD for Controlled Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
10
, pp.
3901
3906
.
20.
Eres
,
G.
,
Rouleau
,
C. M.
,
Yoon
,
M.
,
Puretzky
,
A. A.
,
Jackson
,
J. J.
, and
Geohegan
,
D. B.
, 2009, “
Model for Self-Assembly of Carbon Nanotubes From Acetylene Based on Real-Time Studies of Vertically Aligned Growth Kinetics
,”
J. Phys. Chem. C
,
113
, pp.
15484
15491
.
21.
Zhong
,
G.
,
Hofmann
,
S.
,
Yan
,
F.
,
Telg
,
H.
,
Warner
,
J. H.
,
Eder
,
D.
,
Thomsen
,
C.
,
Milne
,
W. I.
, and
Robertson
,
J.
, 2009, “
Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests
,”
J. Phys. Chem. C
,
113
, pp.
17321
17325
.
22.
Maruyama
,
S.
,
Kojima
,
R.
,
Miyauchi
,
Y.
,
Chiashi
,
S.
, and
Kohno
,
M.
, 2002, “
Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes From Alcohol
,”
Chem. Phys. Lett.
,
360
, pp.
229
234
.
23.
Xiang
,
R.
,
Einarsson
,
E.
,
Okabe
,
H.
,
Chiashi
,
S.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2010, “
Patterned Growth of High-Quality Single-Walled Carbon Nanotubes From Dip-Coated Catalyst
,”
Jpn. J. Appl. Phys.
,
49
(
2
), p.
02BA03
.
24.
Xiang
,
R.
,
Einarsson
,
E.
,
Okawa
,
J.
,
Miyauchi
,
Y.
, and
Maruyama
,
S.
, 2009, “
Acetylene-Accelerated Alcohol Catalytic Chemical Vapor Deposition Growth of Vertically Aligned Single-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
,
113
, pp.
7511
7515
.
25.
Xiang
,
R.
,
Wu
,
T. Z.
,
Einarsson
,
E.
,
Suzuki
,
Y.
,
Murakami
,
Y.
,
Shiomi
,
J.
, and
Maruyama
,
S.
, 2009, “
High-Precision Selective Deposition of Catalyst for Facile Localized Growth of Single-Walled Carbon Nanotubes
,”
J. Am. Chem. Soc.
,
131
, pp.
10344
10345.
You do not currently have access to this content.