Design and construction of nanomotors are one of the most attractive fields in nanotechnology. Following the introduction of a novel concept of the thermomass, the relative mass of a phonon gas based on the Einstein’s energy–mass relation, the continuum and momentum conservation equations for the phonon gas are established to characterize the hydrodynamics of the phonon current in a solid. Like the gas flows in the porous mediums, the phonon current in a dielectric solid imposes a driving force on the solid framework atoms, which can be calculated quantitatively and can be applied to actuate nanomotors. We also predict the dynamic behavior of a nanomotor made up of multiwalled carbon nanotubes in terms of molecular dynamics simulations. A shorter single-walled carbon nanotube with a larger diameter, as a mobile part, surrounds a longer single-walled carbon nanotube with a smaller diameter working as a shaft. When a phonon current passes through the inner shaft, the outer nanotube will translate along and/or rotate around the shaft depending on the chiralities of the carbon nanotubes. The motion traces are found to depend on the chirality pair regularly. This type of nanomotor may be promising, because they are directly driven by thermal energy transport.

References

1.
Hsu
,
T. R.
, 2002,
MEMS and Microsystems: Design and Manufacture
,
McGraw-Hill
,
Boston
.
2.
Craighead
,
H. G.
, 2000, “
Nanoelectromechanical Systems
,”
Science
,
290
, pp.
1532
1535
.
3.
Roukes
,
M.
, 2001, “
Nanoelectromechanical Systems Face the Future
,”
Phys. World
,
14
, pp.
25
31
.
4.
Ekinci
,
K. L.
, and
Roukes
,
M. L.
, 2005, “
Nanoelectromechanical Systems
,”
Rev. Sci. Instrum.
,
76
, p.
061101
.
5.
Yang
,
R.
,
Qin
,
Y.
,
Li
,
C.
,
Zhu
,
G.
, and
Wang
,
Z. L.
, 2009, “
Converting Biomechanical Energy Into Electricity by a Muscle-Movement-Driven Nanogenerator
,”
Nano Lett.
,
9
, pp.
1201
1205
.
6.
Insepov
,
Z.
,
Wolf
,
D.
, and
Hassanein
,
A.
, 2006, “
Nanopumping Using Carbon Nanotubes
,”
Nano Lett.
,
6
, pp.
1893
1895
.
7.
Tuzun
,
R. E.
,
Noid
,
D. W.
, and
Sumpter
,
B. G.
, 1995, “
Dynamics of a Laser Driven Molecular Motor
,”
Nanotechnology
,
6
, pp.
52
63
.
8.
Torras
,
J.
,
Rodriguez-Ropero
,
F.
,
Bertran
,
O.
, and
Aleman
,
C. J.
, 2009, “
Controlled Isomerization of a Light-Driven Molecular Motor: A Theoretical Study
,”
J. Phys. Chem. C
,
113
, pp.
3574
3580
.
9.
Somada
,
H.
,
Hirahara
,
K.
,
Akita
,
S.
, and
Nakayama
,
Y.
, 2009, “
A Molecular Linear Motor Consisting of Carbon Nanotubes
,”
Nano Lett.
,
9
, pp.
62
65
.
10.
Alu
,
A.
, and
Engheta
,
N.
, 2009, “
Optical Nanoswitch: An Engineered Plasmonic Nanoparticle With Extreme Parameters and Giant Anisotropy
,”
New J. Phys.
,
11
, p.
013026
.
11.
Liu
,
D. S.
,
Bruckbauer
,
A.
,
Abell
,
C.
,
Balasubramanian
,
S.
,
Kang
,
D. J.
,
Klenerman
,
D.
, and
Zhou
,
D. J.
, 2006, “
A Reversible pH-Driven DNA Nanoswitch Array
,”
J. Am. Chem. Soc.
,
128
, pp.
2067
2071
.
12.
Cresti
,
A.
, 2008, “
Proposal for a Graphene-Based Current Nanoswitch
,”
Nanotechnology
,
19
, p.
265401
.
13.
Astumian
,
D.
, and
Hanggi
,
P.
, 2002, “
Brownian Motors
,”
Phys. Today
,
11
, pp.
33
39
.
14.
Hanggi
,
P.
, and
Marchesoni
,
F.
, 2009, “
Artificial Brownian Motors: Controlling Transport on the Nanoscale
,”
Rev. Mod. Phys.
,
81
, pp.
387
442
.
15.
Omabegho
,
T.
,
Sha
,
R.
, and
Seeman
,
N. C.
, 2009, “
A Bipedal DNA Brownian Motor With Coordinated Legs
,”
Science
,
324
, pp.
67
71
.
16.
Barreiro
,
A.
,
Rurali
,
R.
,
Hernández
,
E. R.
,
Moser
,
J.
,
Pichler
,
T.
,
Forró
,
L.
, and
Bachtold
,
A.
, 2008, “
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
,”
Science
,
320
, pp.
775
778
.
17.
Schoen
,
P. A. E.
,
Walther
,
J. H.
,
Arcidiacono
,
S.
,
Poulikakos
,
D.
, and
Koumoutsakos
,
P.
, 2006, “
Thermophoretic Motion of Water Nanodroplets Confined Inside Carbon Nanotubes
,”
Nano Lett.
,
9
, pp.
1910
1917
.
18.
Schoen
,
P. A. E.
,
Walther
,
J. H.
,
Poulikakos
,
D.
, and
Koumoutsakos
,
P.
, 2007, “
Phonon Assisted Thermophoretic Motion of Gold Nanoparticles in Carbon Nanotubes
,”
Appl. Phys. Lett.
,
90
, p.
253116
.
19.
Zambrano
,
H. A.
,
Walther
,
J. H.
,
Koumoutsakos
,
P.
, and
Sbalzarini
,
I. F.
, 2009, “
Thermophoretic Motion of Water Nanodroplets Confined Inside Carbon Nanotubes
,”
Nano Lett.
,
9
, pp.
66
71
.
20.
Shiomi
,
J.
, and
Maruyama
,
S.
, 2009, “
Water Transport Inside a Single-Walled Carbon Nanotube Driven by a Temperature Gradient
,”
Nanotechnology
,
20
, p.
055708
.
21.
Cao
,
B. Y.
, and
Guo
,
Z. Y.
, 2007, “
Equation of Motion of Phonon Gas and Non-Fourier Heat Conduction
,”
J. Appl. Phys.
,
102
, p.
053503
.
22.
Guo
,
Z. Y.
, and
Cao
,
B. Y.
, 2008, “
A General Heat Conduction Law Based on the Concept of Motion of Thermal Mass
,”
Acta Phys. Sin.
,
57
, pp.
4273
4281
.
23.
Kittel
,
C.
,
Xiang
,
J. Z.
, and
Wu
,
X. H.
, 2005,
Introduction to Solid State Physics
,
Chemical Industry Press
,
Beijing
.
24.
Einstein
,
A.
,
Lorentz
,
H. A.
,
Minkowski
,
V.
, and
Weyl
,
H.
, 1952,
The Principle of Relativity
,
Dover publications
,
New York
.
25.
Feynman
,
R. P.
,
Leighton
,
R. B.
, and
Sands
,
M. L.
, 1963,
The Feynman Lectures on Physics
,
Addison-Wesley
,
Boston
.
26.
Young
,
H. D.
, and
Freedman
,
R. A.
, 2004,
Sears and Zemansky’s University Physics: With Modern Physics
, 11th ed.,
Pearson Addison Wesley
,
San Francisco
.
27.
Guo
,
Z. Y.
,
Cao
,
B. Y.
,
Zhu
,
H. Y.
, and
Zhang
,
Q. G.
, 2007, “
State Equation of Phonon Gas and Conservation Equations for Phonon Gas Motion
,”
Acta Phys. Sin.
,
56
, pp.
3306
3312
.
28.
Guyer
,
R. A.
, and
Krumhansi
,
J. A.
, 1966, “
Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals
,”
Phys. Rev.
,
148
, pp.
778
788
.
29.
Cimmelli
,
V. A.
, and
Frischmuth
,
K.
, 2007, “
Gradient Generalization to the Extended Thermodynamic Approach and Diffusive-Hyperbolic Heat Conduction
,”
Physica B
,
400
, pp.
257
265
.
30.
Alvarez
,
F. X.
,
Jou
,
D.
, and
Sellitto
,
A.
, 2009, “
Size and Frequency Dependence of Effective Thermal Conductivity in Nanosystems
,”
J. Appl. Phys.
,
105
, p.
014317
.
31.
Cattaneo
,
C.
, 1948, “
On the Conduction of Caloric
,”
Atti. Semin. Mat. Fis. Univ. Modena
,
3
, pp.
83
101
.
32.
Vernotte
,
P. C. R.
, 1958, “
Paradoxes of the Continuous Theory of the Heat Equation
,”
Acad. Sci.
,
246
, pp.
3154
3155
.
33.
Lloyd
,
J. R.
, 1997, “
Electromigration in Thin Film Conductors
,”
Semicond. Sci. Technol.
,
12
, pp.
1177
1185
.
34.
Tu
,
K. N.
, 2003, “
Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects
,”
J. Appl. Phys.
,
94
, pp.
5451
5473
.
35.
Denbigh
,
K. G.
, 1951,
The Thermodynamics of the Steady State
,
Methuen, London
.
36.
Soret
,
C. H.
, 1879, “
Sur L’état D’équilibre Que Prend, du Point de vue de sa Concentration, une Dissolution Saline Primitivement Homogène, dont deux Parties sont Portées à des Températures Différentes
,”
Arch. De Geneve
,
3
, pp.
48
61
.
37.
Goldhirsch
,
I.
, and
Ronis
,
D.
, 1983, “
Theory of Thermophoresis. I. General Considerations and Modecoupling Analysis
,”
Phys. Rev. A
,
27
, pp.
1616
1634
.
38.
Stokes
,
H. T.
, 1987,
Solid State Physics
,
Allyn and Bacon
,
Boston
.
39.
Huntington
,
H. B.
, 1968, “
Driving Forces for Thermal Mass Transport
,”
J. Phys. Chem. Solids
,
29
, pp.
1641
1651
.
40.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
, pp.
4613
4616
.
41.
Hou
,
Q. W.
,
Cao
,
B. Y.
, and
Guo
,
Z. Y.
, 2009, “
Thermal Conductivity of Carbon Nanotube: From Ballistic to Diffusive Transport
,”
Acta Phys. Sin.
,
58
, pp.
7809
7814
.
42.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H.
, 2006, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
,
6
, pp.
96
100
.
43.
Fujii
,
M.
,
Zhang
,
X.
,
Xie
,
H. Q.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
, 2005, “
Measuring the Thermal Conductivity of a Single Carbon Nanotube
,”
Phys. Rev. Lett.
,
95
, p.
065502
.
44.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
, pp.
602
604
.
45.
Yu
,
M. F.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
, 2000, “
Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
,
104
, pp.
8764
8767
.
46.
Servantie
,
J.
, and
Gaspard
,
P.
, 2003, “
Methods of Calculation of a Friction Coefficient: Application to Nanotubes
,”
Phys. Rev. Lett.
,
91
, p.
185503
.
47.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon
,
Oxford
.
48.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471
.
49.
Saito
,
R.
,
Matsuo
,
R.
,
Kimura
,
T.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 2001, “
Anomalous Potential Barrier of Double-Wall Carbon Nanotube
,”
Chem. Phys. Lett.
,
348
, pp.
187
193
.
50.
Lozovik
,
Y. E.
,
Minogin
,
A.
, and
Popov
,
A. M.
, 2003, “
Nanomachines Based on Carbon Nanotubes
,”
Phys. Lett. A
,
313
, pp.
112
121
.
You do not currently have access to this content.