High performance heat exchangers represent nowadays the key of success to go on with the trend of miniaturizing electronic components as requested by the industry. This numerical study, based on Bejan’s Constructal theory, analyzes the thermal behavior of heat removing fin modules, comparing their performances when operating with different types of fluids. In particular, the simulations involve air and water (as representative of gases and liquids), to understand the actual benefits of employing a less heat conductive fluid involving smaller pressure losses or vice versa. The analysis parameters typical of a Constructal description (such as conductance or Overall Performance Coefficient) show that significantly improved performances may be achieved when using water, even if an unavoidable increase in pressure losses affects the liquid-refrigerated case. Considering the overall performance: if the parameter called Relevance tends to 0, air prevails; if it tends to 1, water prevails; if its value is about 0.5, water prevails in most of the case studies.

1.
Biserni
,
C.
,
Rocha
,
L. A. O.
,
Stanescu
,
G.
, and
Lorenzini
,
E.
, 2007, “
Constructal H-Shaped Cavities According to Bejan’s Theory
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
11–12
), pp.
2132
2138
.
2.
Rocha
,
L. A. O.
,
Lorenzini
,
E.
, and
Biserni
,
C.
, 2005, “
Geometric Optimization of Shapes on the Basis of Bejan’s Constructal Theory
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
10
), pp.
1281
1288
.
3.
Didarul
,
I. M.
,
Kenyu
,
O.
,
Minoru
,
Y.
, and
Izuru
,
S.
, 2007, “
Study on Heat Transfer and Fluid Flow Characteristics With Short Rectangular Plate Fin of Different Pattern
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
(
4
), pp.
367
379
.
4.
Akyol
,
U.
, and
Bilen
,
K.
, 2006, “
Heat Transfer and Thermal Performance Analysis of a Surface With Hollow Rectangular Fins
,”
Appl. Therm. Eng.
1359-4311,
26
(
2–3
), pp.
209
216
.
5.
Lorenzini
G.
, and
Moretti
S.
, 2009, “
A Bejan’s Constructal Theory Approach to the Overall Optimization of Heat Exchanging Finned Modules With Air in Forced Convection and Laminar Flow Condition
,”
ASME J. Heat Transfer
0022-1481,
131
(
8
), p.
081801
.
6.
Dogan
,
M.
, and
Sivrioglu
,
M.
, 2005, “
Experimental Investigation of Mixed Convection Heat Transfer From Longitudinal Fins in a Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
9
), pp.
1244
1252
.
7.
Guvenc
,
A.
, and
Yuncu
,
H.
, 2001, “
An Experimental Investigation on Performance of Fins on a Horizontal Base in Free Convection Heat Transfer
,”
Heat Mass Transfer
0947-7411,
37
(
4–5
), pp.
409
416
.
8.
Yazicioğlu
,
B.
, and
Yüncü
,
H.
, 2007, “
Optimum Fin Spacing of Rectangular Fins on a Vertical Base in Free Convection Heat Transfer
,”
Heat Mass Transfer
0947-7411,
44
(
1
), pp.
11
21
.
9.
Mohamed
,
M. M.
, 2006, “
Air Cooling Characteristics of a Uniform Square Modules Array for Electronic Device Heat Sink
,”
Appl. Therm. Eng.
1359-4311,
26
(
5–6
), pp.
486
493
.
10.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
Numerical Analysis on Heat Removal From Y-Shaped Fins: Efficiency and Volume Occupied for a New Approach to Performance Optimisation
,”
Int. J. Therm. Sci.
1290-0729,
46
(
6
), pp.
573
579
.
11.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
A CFD Application to Optimise T-Shaped Fins: Comparisons With Constructal Theory’s Results
,”
ASME J. Electron. Packag.
1043-7398,
129
(
3
), pp.
324
327
.
12.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2008, “
Numerical Heat Transfer Optimisation in Modular Systems of Y-Shaped Fins
,”
ASME J. Heat Transfer
0022-1481,
130
(
8
), pp.
081801
.
13.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
Numerical Analysis of Heat Removal Enhancement With Extended Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
3–4
), pp.
746
755
.
14.
Lorenzini
,
G.
, 1999, “
A Numerical Approach to the Problem of Conjugate Heat Transfer in Turbulent Forced Convection for a Fluid in a Pipe With Internal Longitudinal Fins
,”
Proceedings of the First International Conference on Engineering Thermophysics
, Beijing, China, pp.
194
203
.
15.
Horvat
,
A.
, and
Catton
,
I.
, 2003, “
Numerical Technique for Modeling Conjugate Heat Transfer in an Electronic Device Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
12
), pp.
2155
2168
.
16.
Kandasamy
,
R.
, and
Subramanyam
,
S.
, 2005, “
Application of Computational Fluid Dynamics Simulation Tools for Thermal Characterization of Electronic Packages
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
1
), pp.
61
72
.
17.
Hall
,
G. T.
, and
Marthinuss
,
J. E.
, Jr.
, 2004, “
Air Cooled Compact Heat Exchanger Design for Electronics Cooling
,” Electronics Cooling, 2, available online at http://www.electronics-cooling.com/2004/02/air-cooled-compact-heat-exchanger-design-for-electronics-cooling
18.
Belady
,
C. L.
, and
Minichiello
,
A.
, 2003, “
Effective Thermal Design for Electronic Systems
,” Electronics Cooling Magazine, 5, available online at http://www.electronics-cooling.com/2003/05/effective-thermal-design-for-electronic-systems
19.
Bejan
,
A.
, and
Almogbel
,
M.
, 2000, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
12
), pp.
2101
2115
.
20.
2009, Comsol Multiphysics version 3.5a, Users’ Manuals.
You do not currently have access to this content.