The blade tip region encounters high thermal loads because of the hot gas leakage flows, and it must therefore be cooled to ensure a long durability and safe operation. A common way to cool a blade tip is to design serpentine passages with a 180 deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase blade tip lifetime. Pins, dimples, and protrusions are well recognized as effective devices to augment heat transfer in various applications. In this paper, enhanced heat transfer of an internal blade tip-wall has been predicted numerically. The computational models consist of a two-pass channel with 180 deg turn and arrays of circular pins, hemispherical dimples, or protrusions internally mounted on the tip-wall. Inlet Reynolds numbers are ranging from 100,000 to 600,000. The overall performance of the two-pass channels is evaluated. Numerical results show that the heat transfer enhancement of the pinned-tip is up to a factor of 3.0 higher than that of a smooth tip while the dimpled-tip and protruded-tip provide about 2.0 times higher heat transfer. These augmentations are achieved at the cost of an increase of pressure drop by less than 10%. By comparing the present cooling concepts with pins, dimples, and protrusions, it is shown that the pinned-tip exhibits best performance to improve the blade tip cooling. However, when disregarding the added active area and considering the added mechanical stress, it is suggested that the usage of dimples is more suitable to enhance blade tip cooling, especially at low Reynolds numbers.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Goldstein
,
R. J.
, 2001,
Heat Transfer in Gas Turbine Systems
,
Annals of the New York Academy of Sciences
,
New York
.
3.
Sunden
,
B.
, and
Faghri
,
M.
, 2001,
Heat Transfer in Gas Turbines
,
WIT
,
Southampton, UK
.
4.
Han
,
J. C.
, 2004, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotating Mach.
1023-621X,
10
(
6
), pp.
443
457
.
5.
Sunden
,
B.
, and
Xie
,
G. N.
, 2010, “
Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey
,”
Heat Transfer Eng.
0145-7632,
31
(
7
), pp.
527
554
.
6.
Bunker
,
R. S.
, 2001,
A Review of Turbine Blade Tip Heat Transfer
,
R. J.
Goldstein
, ed.,
Annals of the New York Academy of Sciences
,
New York
, pp.
64
79
.
7.
Bunker
,
R. S.
, 2006, “
Axial Turbine Blade Tips: Function, Design and Durability
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
271
285
.
8.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
926
932
.
9.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2003, “
Heat Transfer and Friction in Channels With Very High Blockage 45-Degree Staggered Turbulators
,”
ASME
Paper No. GT2003-38611.
10.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
, pp.
337
362
.
11.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
12.
Lau
,
S. C.
,
Kim
,
Y. S.
, and
Han
,
J. C.
, 1987, “
Local Endwall Heat/Mass Distributions in Pin Fin Channels
,”
AIAA J.
0001-1452,
1
(
4
), pp.
365
372
.
13.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effect of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
257
263
.
14.
Goldstein
,
R. J.
,
Jabbari
,
M. Y.
, and
Chen
,
S. B.
, 1994, “
Convective Mass Transfer and Pressure Loss Characteristics of Staggered Short Pin-Fin Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
149
160
.
15.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F.
, 1997, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passages
,”
ASME
Paper No. 97-GT-437.
16.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
, 2000, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
307
313
.
17.
Moon
,
S. W.
, and
Lau
,
S. C.
, 2002, “
Turbulent Heat Transfer Measurement on a Wall With Concave and Cylindrical Dimples in a Square Channel
,”
ASME
Paper No. GT-2002-30208.
18.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels With Dimples
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
555
564
.
19.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depression on a Channel Surface
,”
Phys. Fluids
1070-6631,
13
, pp.
3442
3451
.
20.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
275
283
.
21.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
, 2001, “
Flow Structure and Local Nusselt Number Variations in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4413
4425
.
22.
Hwang
,
S. D.
,
Kwon
,
H.
, and
Cho
,
H. H.
, 2008, “
Heat Transfer With Dimple/Protrusion Arrays in a Rectangular Duct With a Low Reynolds Number Range
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
916
926
.
23.
Park
,
J.
,
Desam
,
P. R.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure Above a Dimpled Surface in a Channel
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
1
20
.
24.
Bunker
,
R. S.
, 2008, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,”
ASME J. Turbomach.
0889-504X,
130
, p.
041007
.
25.
Xie
,
G. N.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
, 2009, “
Enhanced Heat Transfer on the Tip-Wall in a Rectangular Two-Pass Channel by Pin-Fin Arrays
,”
Numer. Heat Transfer, Part A
1040-7782,
55
, pp.
739
761
.
26.
Xie
,
G. N.
,
Sundén
,
B.
,
Utriainen
,
E.
, and
Wang
,
L.
, 2010, “
Computational Analysis of Pin-Fin Arrays Effects of Internal Heat Transfer Enhancement of a Blade Tip-Wall
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
031901
.
27.
Xie
,
G. N.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
, 2011, “
Augmented Heat Transfer of an Internal Blade Tip by Full or Partial Arrays of Pin-Fins
,”
Heat Transfer Research
1064-2285,
42
(
1
), pp.
65
81
; see http://www.begellhouse.com/journals/46784ef93dddff27.htmlhttp://www.begellhouse.com/journals/46784ef93dddff27.html.
28.
Xie
,
G. N.
, and
Sundén
,
B.
, “
Conjugated Analysis of Heat Transfer Enhancement of an Internal Blade Tip-Wall With Pin-Fin Arrays
,”
J. Enhanced Heat Transfer
1065-5131, in press.
29.
Xie
,
G. N.
, and
Sundén
,
B.
, 2011, “
Comparison of Heat Transfer Enhancement of an Internal Blade Tip With Metal or Insulating Pins
,”
Advances in Applied Mathematics and Mechanics
2070-0733,
3
(
3
), pp.
1
13
; see http://www.global-sci.org/aammhttp://www.global-sci.org/aamm.
30.
Shih
,
T. -H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
You do not currently have access to this content.