Abstract

A novel type of so-called dream pipe is introduced hoping for the high-efficiency heat removal. Unlike traditional types with mechanical shaker, this one fits up an inverse-piezoelectric-cells embedded thin disk coupled with ac power to cause oscillatory pipe flows. A theoretical approach is adopted to comprehensively describe thermal characteristics of that new device. With a view to obtaining more practical expressions than accepted before, the Galerkin method based on the variational principle is used to solve governing partial differential equations. The induced tidal displacement and the relative increase of thermal diffusivity are expressed in reduced algebraic form. Also presented are design formulas defining the specific driving power and the specific number of required tubes. Concerning the effective thermal diffusivity, the author’s predictions are fairly well consistent with exact ones deduced from Watson’s expression. Ratios of the two are linearly regressed to a cubic equation applicable to the frequency range from 0.5 Hz to 6.0 Hz. Recommendable coefficient values are listed in the table. Possible combinations of four fluids of interest and seven levels of the applied ac voltage are considered in a parametric study. Numerical results are graphically shown in the figures for discussion on the feasibility.

References

1.
Chatwin
,
P. C.
, 1975, “
On the Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes
,”
J. Fluid Mech.
,
71
(
3
), pp.
513
527
.
2.
Watson
,
E. J.
, 1983, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
(
8
), pp.
233
244
.
3.
Jaeger
,
M. J.
, and
Kurzweg
,
U. H.
, 1983, “
Determination of the Longitudinal Dispersion Coefficient in Flows Subjected to High-Frequency Oscillations
,”
Phys. Fluids
,
26
(
6
), pp.
1380
1382
.
4.
Zhao
,
T. S.
, and
Cheng
,
P.
, 1998, “
Enhanced Axial Heat Diffusion by a Reciprocating Flow
,”
Annual Review of Heat Transfer
,
Vol. 9
,
C. L.
Tien
, ed.,
Begell House
,
New York
, pp.
388
395
.
5.
Kurzweg
,
U. H.
, and
Zhao
,
L. D.
, 1984, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
(
11
), pp.
2624
2627
.
6.
Kurzweg
,
U. H.
, 1985, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME J. Heat Transfer
,
107
(
2
), pp.
459
462
.
7.
Kurzweg
,
U. H.
, 1986, “
Temporal and Spatial Distribution of Heat Flux in Oscillating Flow Subjected to Axial Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
29
(
12
), pp.
1969
1977
.
8.
Kurzweg
,
U. H.
, 1986,
Heat Transfer Device for the Transport of Large Conduction Flux Without Net Mass Transfer
, U. S. Patent No. 4590993.
9.
Zhang
,
J. G.
, and
Kurzweg
,
U. H.
, 1991, “
Numerical Simulation of Time-Dependent Heat Transfer in Oscillating Pipe Flow
,”
AIAA J. Thermophy. Heat Transfer
,
5
(
3
), pp.
401
406
.
10.
Zhang
,
J. G.
, and
Kurzweg
,
U. H.
, 1991, “
A Numerical Study of Enhanced Thermal Pumping (ETP)
,”
8th Symposium on Space Nuclear Power Systems
, Albuquerque, NM, AIP Conf. Proc.,
217
(
2
), pp.
728
733
.
11.
Katsuta
,
M.
,
Nagata
,
K.
,
Maruyama
,
Y.
, and
Tsujimori
,
A.
, 1991, “
Fundamental Characteristics of Heat Conduction Enhancement in Oscillating Viscous Flow–Dream Pipe
,”
3rd ASME/JSME Thermal Engineering Joint Conference
,
Reno, NV
,
Vol. 3
, pp.
69
74
.
12.
Kaviany
,
M.
, 1990, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Analysis
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
49
55
.
13.
Kaviany
,
M.
, and
Reckker
,
M.
, 1990, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
56
63
.
14.
Rocha
,
L. A. O.
, and
Bejan
,
A.
, 2001, “
Geometric Optimization of Periodic Flow and Heat Transfer in a Volume Cooled by Parallel Tubes
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
233
239
.
15.
Nishio
,
S.
,
Shi
,
X. H.
, and
Zhang
,
W. M.
, 1995, “
Oscillation-Induced Heat Transport: Heat Transport Characteristics Along Liquid-Columns of Oscillation-Controlled Heat Transport Tubes
,”
Int. J. Heat Mass Transfer
,
38
(
13
), pp.
2457
2470
.
16.
Akachi
,
H.
, 1990,
Structure of a Heat Pipe
, U. S. Patent No. 4921041.
17.
Akachi
,
H.
, 1993,
Structure of Micro-Heat Pipe
, U. S. Patent No. 5219020.
18.
Cai
,
Q.
,
Chen
,
C. I.
, and
Asfia
,
J. F.
, 2006, “
Operating Characteristic Investigations in Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1329
1334
.
19.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
, 2008, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(
8
), p. 081501 (
1
7
).
20.
Cai
,
Q.
,
Chen
,
C. I.
, and
Asfia
,
J. F.
, 2007, “
Experimental Investigations of an Avionics Cooling System for Aerospace Vehicle
,”
AIAA J. Spacecr. Rockets
,
44
(
2
), pp.
439
444
.
21.
Borgmeyer
,
B.
, and
Ma
,
H. B.
, 2007, “
Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe
,”
AIAA J. Thermophys. Heat Transfer
,
21
(
2
), pp.
405
409
.
22.
Zhang
,
Y.
, and
Faghri
,
A.
, 2008, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
40
.
23.
Qu
,
J.
,
Wu
,
H.
,
Cheng
,
P.
, and
Wang
,
X.
, 2009, “
Non-Linear Analyses of Temperature Oscillations in a Closed-Loop Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3481
3489
.
24.
Howell
,
J. T.
,
Fikes
,
J.
, and O’
Neil
,
M.
, 2005, “
Novel Space-Based Solar Power Technologies and Architectures for Earth and Beyond
,”
56th Int. Aeronautical Congress
,
Fukuoka
,
Japan
, IAC-05-C3.1.04.
25.
Furukawa
,
M.
, 2006, “
Specific Performance Calculations for Two Types of Space Solar Power Systems
,”
8th Biennial ASME Conference on Engineering Systems and Design Analysis
,
Turin
,
Italy
, ESDA2006-95107.
26.
Kaviany
,
M.
, 1986, “
Some Aspects of Enhanced Heat Diffusion in Fluids by Oscillation
,”
Int. J. Heat Mass Transfer
,
29
(
12
), pp.
2002
2006
.
27.
Gedeon
,
D.
, 1986, “
Mean-Parameter Modeling of Oscillating Flow
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
513
518
.
28.
Ozawa
,
M.
, and
Kawamoto
,
A.
, 1991, “
Lumped-Parameter Modeling of Heat Transfer Enhanced by Sinusoidal Motion of Fluid
,”
Int. J. Heat Mass Transfer
,
34
(
12
), pp.
3083
3095
.
29.
Takahashi
,
I.
, 1994, “
Axial Heat-Transfer Characteristics Enhanced by Oscillating Flow in a Thin Tube
,”
Heat Transfer – Japanese Res., 23(6)
,
Scripta Technica
,
New York
, pp.
525
543
.
Takahashi
,
I.
, (
Originally published in Trans. Jpn. Soc. Mech. Eng.
,
61
(
581
), 1995, pp.
275
282 (in Japanese)).
30.
Furukawa
,
M.
, 2003, “
Design Formulas for Oscillating Heat Transport in Open-Ended Tubes
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1183
1186
.
31.
Schmit
,
L. A.
, 1956, “
Application of the Variational Method, the Galerkin Technique, and Normal Coordinates in a Transient Temperature Distribution Problem
,”
Massachusetts Institute of Technology
, WADC Technical Report 56-287, ASTIA Document AD-97326.
32.
Goodman
,
T. R.
, 1963, “
Application of Integral Methods to Transient Nonlinear Heat Transfer
,”
Advances in Heat Transfer
,
Vol. 1
,
T. F.
Irvine
, Jr.
and
J. P.
Harnett
, eds.,
Academic
,
New York
, pp.
51
122
.
33.
Furukawa
,
M.
, 2008, “
Fluid Property Equations as Data Base for Thermal Design Calculations
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
51
(
173
), pp.
203
208
.
You do not currently have access to this content.