Thermal diffusion, the process by which a multicomponent mixture develops a concentration gradient when exposed to a temperature gradient, has been studied in order to understand if its inclusion is warranted in the modeling of single-wall carbon nanotubes (SWNTs) synthesis by thermal chemical vapor deposition (CVD). A fully coupled reactor-scale model employing conservation of mass, momentum, species, and energy equations with detailed gas phase and surface reaction mechanisms has been utilized to describe the evolution of hydrogen and hydrocarbon feed streams as they undergo transport, as well as homogeneous and heterogeneous chemical reaction within a CVD reactor. Steady state velocity, temperature, and concentration fields within the reactor volume are determined, as well as concentrations of adsorbed species and SWNT growth rates. The effect of thermodiffusion in differing reactor conditions has been investigated to understand the impact on SWNT growth. Thermal diffusion can have a significant impact on SWNT growth, and the first approximation of the thermal diffusion factor, based on the Chapman–Enskog molecular theory, is sufficient for modeling thermophoretic behavior within a CVD reactor. This effect can be facilitatory or inhibitory, based on the thermal and mass flux conditions. The results of this investigation are useful in order to optimize model and reactor designs to promote optimal SWNT deposition rates.

1.
Grew
,
K. E.
, and
Ibbs
,
T. L.
, 1952,
Thermal Diffusion in Gases
,
Cambridge University Press
,
Cambridge, England
.
2.
Ferziger
,
J. H.
, and
Kaper
,
H. G.
, 1972,
Mathematical Theory of Transport Processes in Gases
,
North-Holland
,
Amsterdam
.
3.
Juza
,
J.
, and
Cermák
,
J.
, 1982, “
Phenomenological of the CVD Epitaxial Reactor
,”
J. Electrochem. Soc.
0013-4651,
129
, pp.
1627
1634
.
4.
Jenkinson
,
J.
, and
Pollard
,
R.
, 1984, “
Thermal Diffusion Effects in Chemical Vapor Deposition Reactors
,”
J. Electrochem. Soc.
0013-4651,
131
, pp.
2911
2917
.
5.
Hitchman
,
M. L.
, 1980, “
A Consideration of the Effect of the Thermal Boundary Layer on CVD Growth Rates
,”
J. Cryst. Growth
0022-0248,
48
, pp.
394
402
.
6.
Finnie
,
P.
,
Li-Pook-Than
,
A.
,
Lefebvre
,
J.
, and
Austing
,
D. G.
, 2006, “
Optimizing of Methane Cold Wall Chemical Vapor Deposition for the Production of Single Walled Carbon Nanotubes and Devices
,”
Carbon
0008-6223,
44
, pp.
3199
3206
.
7.
Jung
,
Y. J.
,
Wei
,
B.
,
Vajtai
,
R.
,
Ajayan
,
P. M.
,
Homma
,
Y.
,
Prabhakaran
,
K.
, and
Ogino
,
T.
, 2003, “
Mechanism of Selective Growth of Carbon Nanotubes on SiO2/Si Patterns
,”
Nano Lett.
1530-6984,
3
, pp.
561
564
.
8.
Takagi
,
D.
,
Homma
,
Y.
, and
Kobayashi
,
Y.
, 2004, “
Selective Growth of Individual Single-Walled Carbon Nanotubes Suspended Between Pillar Structures
,”
Physica E (Amsterdam)
1386-9477,
24
, pp.
1
5
.
9.
Homma
,
Y.
,
Kobayashi
,
Y.
,
Ogino
,
T.
,
Takagi
,
D.
,
Ito
,
R.
,
Jung
,
Y. J.
, and
Ajayan
,
P. M.
, 2003, “
Role of Transition Metal Catalysts in Single-Walled Carbon Nanotube Growth in Chemical Vapor Deposition
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
12161
12164
.
10.
Murphy
,
D. B.
,
Carroll
,
R. W.
, and
Klonowski
,
J. E.
, 1997, “
Analysis of Products of High-Temperature Pyrolysis of Various Hydrocarbons
,”
Carbon
0008-6223,
35
, pp.
1819
1823
.
11.
Dikonimos Makris
,
Th.
,
Giorgi
,
R.
,
Lisi
,
N.
,
Pilloni
,
L.
,
Salernitano
,
E.
,
Sarto
,
F.
, and
Alvisi
,
M.
, 2004, “
Carbon Nanotube Growth by HFCVD: Effect of the Process Parameters and Catalyst Preparation
,”
Diamond Relat. Mater.
0925-9635,
13
, pp.
305
310
.
12.
Reilly
,
P. T. A.
, and
Whitten
,
W. B.
, 2006, “
The Role of Free Radical Condensates in the Production of Carbon Nanotubes During the Hydrocarbon CVD Process
,”
Carbon
0008-6223,
44
, pp.
1653
1660
.
13.
Kwok
,
K.
, and
Chiu
,
W. K. S.
, 2005, “
Growth of Carbon Nanotubes by Open-Air Laser-Induced Chemical Vapor Deposition
,”
Carbon
0008-6223,
43
, pp.
437
446
.
14.
Lysaght
,
A. C.
, and
Chiu
,
W. K. S.
, 2008, “
Modeling of the Carbon Nanotube Chemical Vapor Deposition Process Using Methane and Acetylene Precursor Gases
,”
Nanotechnology
0957-4484,
19
, p.
165607
.
15.
Coltrin
,
M.
, and
Dandy
,
D. S.
, 1993, “
Analysis of Diamond Growth in Subatmospheric DC Plasma-Gun Reactors
,”
J. Appl. Phys.
0021-8979,
74
, p.
5803
.
16.
Grujicic
,
M.
,
Cao
,
G.
, and
Gersten
,
B.
, 2002, “
Optimization of the Chemical Vapor Deposition Process for Carbon Nanotubes Fabrication
,”
Appl. Surf. Sci.
0169-4332,
199
, pp.
90
106
.
17.
Klinke
,
C.
,
Bonard
,
J. M.
, and
Kern
,
K.
, 2005, “
Thermodynamic Calculations on the Catalytic Growth of Multiwall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, p.
035403
.
18.
Kee
,
R. J.
,
Coltrin
,
M. E.
, and
Glarborg
,
M.
, 2003,
Chemically Reacting Flow: Theory and Practice
,
Wiley
,
New York
.
19.
Ruckenstein
,
E.
, and
Hu
,
Y. H.
, 1998, “
Catalytic Preparation of Narrow Pore Size Distribution Mesopourous Carbon
,”
Carbon
0008-6223,
36
, pp.
269
275
.
20.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
21.
Holstein
,
W.
, 1988, “
Thermal Diffusion in Metal-Organic Chemical Vapor Deposition
,”
J. Electrochem. Soc.
0013-4651,
135
, pp.
1788
1793
.
22.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
, 1954,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
23.
Neufeld
,
P.
,
Janzen
,
A.
, and
Aziz
,
R.
, 1972, “
Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l,s)∗ for the Lennard-Jones (12-6) Potential
,”
J. Chem. Phys.
0021-9606,
57
, p.
1100
.
24.
Dunlop
,
P.
, and
Bignell
,
C.
, 1987, “
Diffusion and Thermal Diffusion in Binary Mixtures of Methane with Noble Gases and of Argon with Krypton
,”
Physica A
0378-4371,
145
, pp.
584
598
.
25.
Ibbs
,
T.
, 1925, “
Thermal Diffusion Measurements
,”
Proc. R. Soc. London, Ser. A
0950-1207,
107
, pp.
470
486
.
26.
Grujicic
,
M.
,
Cao
,
G.
, and
Gersten
,
B.
, 2003, “
Reactor Length-scale Modeling of Chemical Vapor Deposition of Carbon Nanotubes
,”
J. Mater. Sci.
0022-2461,
38
, pp.
1819
1830
.
27.
Lysaght
,
A. C.
, and
Chiu
,
W. K. S.
, 2009, “
The Role of Surface Species in Chemical Vapor Deposited Carbon Nanotubes
,”
Nanotechnology
0957-4484,
20
, p.
115605
.
You do not currently have access to this content.