Secondary flow structure and its enhancement on the heat transfer in a horizontal divergent channel have been studied. The bottom wall is horizontal and is heated uniformly while the opposite top wall is insulated and inclined with respect to the horizontal plane so as to create a divergent angle of 3 deg. At the entrance of the channel, the aspect ratios for the width to the height and the channel length to the height are 6.67 and 15, respectively. The Reynolds number ranges from 100 to 2000 and the buoyancy parameter Gr/Re2 from 0 to 405. Both flow visualization and temperature fluctuation measurements at different locations are made to indicate the flow structure and oscillation of the secondary flow. The adverse pressure gradient in the divergent channel causes a thicker heated layer in the bottom and earlier initiation of secondary flow. Interaction between neighboring vortices and plumes becomes more severe and highly unstable. This precludes the formation of steady two-dimensional longitudinal vortex rolls in the downstream and leads to an earlier and larger enhancement of the heat transfer than the case of the parallel-plate channel. The effects of the buoyancy parameter and the divergence of the channel on the secondary flow structure and the Nusselt number are presented and discussed.

1.
Gilpin
,
R. R.
,
Imura
,
H.
, and
Cheng
,
K. C.
, 1978, “
Experiments on the Onset of Longitudinal Vortices in Horizontal Blasius Flow Heated From Below
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
71
77
.
2.
Maughan
,
J. R.
, and
Incropera
,
F. P.
, 1987, “
Experiments on Mixed Convection Heat Transfer for Airflow in a Horizontal Rectangular and Inclined Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1307
1318
.
3.
Hwang
,
G. J.
, and
Liu
,
C. L.
, 1976, “
An Experimental Study of Convective Instability in the Thermal Entrance Region of a Horizontal Parallel-Plate Channel Heated From Below
,”
Can. J. Chem. Eng.
0008-4034,
54
, pp.
521
525
.
4.
Kamotani
,
Y.
,
Ostrach
,
S.
, and
Miao
,
H.
, 1979, “
Convective Heat Transfer Augmentation by Means of Thermal Instability
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
222
226
.
5.
Yasuo
,
M.
, and
Yutaka
,
U.
, 1966, “
Forced Convection Heat Transfer Between Horizontal Flat Plate
,”
Int. J. Heat Mass Transfer
0017-9310,
9
, pp.
803
817
.
6.
Osborne
,
D. G.
, and
Incropera
,
F. P.
, 1985, “
Laminar Mixed Convection Heat Transfer for Flow Between Horizontal Parallel Plates With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
207
217
.
7.
Incropera
,
F. P.
,
Knox
,
A. L.
, and
Maughan
,
J. R.
, 1987, “
Mixed Convection Flow and Heat Transfer in the Entry Region of a Horizontal Rectangular Duct
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
434
439
.
8.
Davis
,
E. J.
, and
Choi
,
C. K.
, 1977, “
Cellular Convection With Liquid-Film Flow
,”
J. Fluid Mech.
0022-1120,
81
(
3
), pp.
565
592
.
9.
Kamotani
,
Y.
, and
Ostrach
,
S.
, 1976, “
Effect of Thermal Instability on Thermally Developing Laminar Channel Flow
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
62
66
.
10.
Akiyama
,
M.
,
Hwang
,
G. H.
, and
Cheng
,
K. C.
, 1971, “
Experiments in the Onset of Longitudinal Vortices in Laminar Forced Convection Between Horizontal Plates
,”
ASME J. Heat Transfer
0022-1481,
93
, pp.
335
341
.
11.
Ostrach
,
S.
, and
Kamotani
,
Y.
, 1975, “
Heat Transfer Augmentation in Laminar Fully Developed Channel Flow by Means of Heating From Below
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
220
225
.
12.
Kuan-Cheng
,
C.
,
Ouazzani
,
J.
, and
Rosenberger
,
F.
, 1987, “
Mixed Convection Between Horizontal Plates—II. Fully Developed Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1655
1662
.
13.
Kuan-Cheng
,
C.
, and
Rosenberger
,
F.
, 1987, “
Mixed Convection Between Horizontal Plates—I. Entrance Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
1645
1654
.
14.
Maughan
,
J. R.
, and
Incropera
,
F. P.
, 1990, “
Regions of Heat Transfer Enhancement for Laminar Mixed Convection in a Parallel Plate Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
555
570
.
15.
Lee
,
F. S.
, and
Hwang
,
G. J.
, 1991, “
Transient Analysis on the Onset of Thermal Instability in the Thermal Entrance Region of a Horizontal Parallel Plate Channel
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
363
370
.
16.
Lee
,
F. S.
, and
Hwang
,
G. J.
, 1991, “
The Effect of Asymmetric Heating on the Onset of Thermal Instability in the Thermal Entrance Region of a Parallel Plate Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2207
2218
.
17.
Lin
,
J. N.
,
Chou
,
F. C.
, and
Tzeng
,
P. Y.
, 1991, “
Theoretical Prediction of the Onset of Thermal Instability in the Thermal Entrance Region of Horizontal Rectangular Channels
,”
Int. J. Heat Fluid Flow
0142-727X,
12
, pp.
218
224
.
18.
Abou-Ellail
,
M. M. M.
, and
Morcos
,
S. M.
, 1983, “
Buoyancy Effects in the Entrance Region of Horizontal Rectangular Channels
,”
ASME J. Heat Transfer
0022-1481,
105
, p.
924
.
19.
Mahaney
,
H. V.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
, 1987, “
Development of Laminar Mixed Convection in the Thermal Entrance Region of Horizontal Rectangular Ducts
,”
Numer. Heat Transfer
0149-5720,
12
, pp.
137
155
.
20.
Maughan
,
J. R.
, and
Incropera
,
F. P.
, 1990, “
Fully Developed Mixed Convection in a Horizontal Channel Heated Uniformly From Above and Below
,”
Numer. Heat Transfer
0149-5720,
17
, pp.
417
430
.
21.
Chou
,
F. C.
, and
Hwang
,
G. J.
, 1987, “
Vorticity-Method for Graetz Problem With the Effect of Natural Convection in a Horizontal Rectangular Channel With Uniform Wall Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
704
710
.
22.
Lin
,
J. N.
, and
Chou
,
F. C.
, 1989, “
Laminar Mixed Convention in the Thermal Entrance Region of Horizontal Isothermal Rectangular Channels
,”
Can. J. Chem. Eng.
0008-4034,
67
, pp.
361
367
.
23.
Nyce
,
T. A.
,
Ouazzani
,
J.
,
Durand-Daubin
,
A.
, and
Rosenberger
,
F.
, 1992, “
Mixed Convection in a Horizontal Rectangular Channel—Experimental and Numerical Velocity Distributions
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1481
1494
.
24.
Gau
,
C.
,
Liu
,
C. W.
,
Huang
,
T. M.
, and
Aung
,
W.
, 1999, “
Secondary Flow and Enhancement of Heat Transfer in Horizontal Parallel-Plate and Convergent Channels Heating From Below
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2629
2647
.
25.
Wilson
,
K. S. Chiu
,
Richards
,
C. J.
, and
Jaluria
,
Y.
, 2000, “
Flow Structure and Heat Transfer in a Horizontal Converging Channel Heated From Below
,”
Phys. Fluids
1070-6631,
12
(
8
), pp.
2128
2136
.
26.
Gau
,
C.
,
Huang
,
T. M.
, and
Aung
,
W.
, 1996, “
Flow and Mixed Convection Heat Transfer in a Divergent Heated Vertical Channel
,”
ASME J. Heat Transfer
0022-1481,
118
(
3
), pp.
606
615
.
27.
Yang
,
C. S.
,
Liu
,
C. G.
, and
Gau
,
C.
, 2009, “
Study of Channel Divergence on the Flow and Heat Transfer in Horizontal Ducts Heated From a Side
,”
Int. J. Therm. Sci.
1290-0729,
48
(
1
), pp.
105
113
.
28.
Huang
,
T. M.
,
Gau
,
C.
, and
Aung
,
W.
, 1995, “
Mixed Convection Flow and Heat Transfer in a Vertical Convergent Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
13
), pp.
2445
2456
.
29.
Webb
,
B. W.
, and
Hill
,
D. P.
, 1989, “
High Rayleigh Number Laminar Natural Convection in an Asymmetrically Heated Vertical Channel
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
649
656
.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
12
.
You do not currently have access to this content.