With the increase in power consumption in compact electronic devices, passive heat transfer cooling technologies with high-heat-flux characteristics are highly desired in microelectronic industries. Carbon nanotube (CNT) clusters have high thermal conductivity, nanopore size, and large porosity and can be used as wick structure in a heat pipe heatspreader to provide high capillary force for high-heat-flux thermal management. This paper reports investigations of high-heat-flux cooling of the CNT biwick structure, associated with the development of a reliable thermometer and high performance heater. The thermometer/heater is a 100-nm-thick and 600μm wide Z-shaped platinum wire resistor, fabricated on a thermally oxidized silicon substrate of a CNT sample to heat a 2×2mm2 wick area. As a heater, it provides a direct heating effect without a thermal interface and is capable of high-temperature operation over 800°C. As a thermometer, reliable temperature measurement is achieved by calibrating the resistance variation versus temperature after the annealing process is applied. The thermally oxidized layer on the silicon substrate is around 1-μm-thick and pinhole-free, which ensures the platinum thermometer/heater from the severe CNT growth environments without any electrical leakage. For high-heat-flux cooling, the CNT biwick structure is composed of 250μm tall and 100μm wide stripelike CNT clusters with 50μm stripe-spacers. Using 1×1cm2 CNT biwick samples, experiments are completed in both open and saturated environments. Experimental results demonstrate 600W/cm2 heat transfer capacity and good thermal and mass transport characteristics in the nanolevel porous media.

1.
Vityaz
,
P. A.
,
Konev
,
S. K.
,
Medvedev
,
V. B.
, and
Sheleg
,
V. K.
, 1984, “
Heat Pipes With Bidispersed Capillary Structures
,”
Proceedings of the Fifth International Heat Pipe Conference
, Vol.
1
, pp.
127
135
.
2.
North
,
M. T.
,
Rosenfeld
,
J. H.
, and
Shaubach
,
R. M.
, 1995, “
Liquid Film Evaporation From Bi-Dispersed Capillary Wicks in Heat Pipe Evaporators
,”
Proceedings of the Ninth International Heat Pipe Conference
, Albuquerque, NM, May 1–5, pp.
143
147
.
3.
North
,
M. T.
,
Sarraf
,
D. B.
,
Rosenfeld
,
J. H.
,
Maidanik
,
Y. F.
, and
Vershinin
,
S.
, 1997, “
High Heat Flux Loop Heat Pipes
,”
AIP Conf. Proc.
0094-243X,
387
, pp.
561
566
.
4.
Wang
,
J.
, and
Catton
,
I.
, 2004, “
Vaporization Heat Transfer in Biporous Wicks of Heat Pipe Evaporators
,”
Proceedings of the 13th International Heat Pipe Conference
, Vol.
2
, pp.
76
86
.
5.
Cao
,
X. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 2002, “
Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
4
), pp.
547
552
.
6.
Merilo
,
E. G.
,
Semenic
,
T.
, and
Catton
,
I.
, 2004, “
Experimental Investigation of Boiling Heat Transfer in Bidispersed Media
,”
Proceedings of the 13th International Heat Pipe Conference
, Vol.
2
, pp.
87
93
.
7.
Li
,
C.
,
Peterson
,
G. P.
, and
Wang
,
Y.
, 2006, “
Evaporation/Boiling on Thin Capillary Wick (I): Thickness Effects
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1312
1319
.
8.
Semenic
,
T.
,
Lin
,
Y.
, and
Catton
,
I.
, 2005, “
Biporous Sintered Copper for a Closed Loop Heat Pipe Evaporator
,” ASME Paper No. IMECE2005-82180.
9.
Reilly
,
S. W.
, and
Catton
,
I.
, 2009, “
Improving Biporous Heat Transfer by Addition of Monoporous Interface Layer
,” ASME Paper No. HT2009-88257.
10.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Avouris
,
P.
, eds., 2001,
Carbon Nanotubes Synthesis, Structure, Properties and Applications
,
Springer
,
Berlin
.
11.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurement of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
215502
.
12.
Cai
,
Q.
,
Chen
,
C. L.
,
Xiong
,
G.
, and
Ren
,
Z. F.
, 2008, “
Exploration of Carbon Nanotube Wick Structure for High Heat Flux Cooling
,” ASME Paper No. HT2008-56208.
13.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
A Micro-Channel Heat Sink With Integrated Temperature Sensors for Phase Transition Study
,”
12th IEEE International Conference on Micro ElectroMechanical Systems
, Jan. 17–21, pp.
159
164
.
14.
Datta
,
J. R.
, 1995, “
Heater Integrated Sensor System
,”
Proceedings of the IEEE International Symposium on Industrial Electronics
, Jul. 10–14, pp.
849
854
.
15.
Tait
,
R. B.
,
Huphries
,
R.
, and
Lorenz
,
J.
, 1994, “
Thick Film Heater Elements and Temperature Sensors in Modern Domestic Appliances
,”
IEEE Trans. Ind. Appl.
0093-9994,
30
(
3
), pp.
573
577
.
16.
Chen
,
H. T.
,
Liu
,
C. W.
,
Liu
,
S. G.
,
Yang
,
C. S.
, and
Gau
,
C.
, 2007, “
Fabrication of a Complicated Heat Transfer Microchannel System for CPU Cooling Study
,”
Proceedings of the Second IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, Jan. 16–19, pp.
654
658
.
17.
Nicholas
,
J. V.
, and
White
,
D. R.
, 2001,
Traceable Temperature
, 2nd ed.,
Wiley
,
New York
.
18.
Cai
,
Q.
,
Chen
,
B. C.
,
Zhao
,
Y.
,
Mack
,
J.
,
Ma
,
Y.
,
Chen
,
C. L.
,
Wang
,
H.
, and
Ren
,
Z. F.
, 2009, “
Thermal Property Measurements of Carbon Nanotube Forest Synthesized by Thermal CVD Process
,” ASME Paper No. HT2009-88076.
19.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
New York
.
20.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2007, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3933
3942
.
You do not currently have access to this content.