Heat transfer enhancement characteristics, through a transition scenario of flow bifurcations in symmetric wavy wall channels, are investigated by direct numerical simulations of the mass, momentum, and energy equations using spectral element methods. Flow bifurcations, transition scenarios, and heat transfer characteristics are determined by increasing the Reynolds numbers from a laminar to a transitional flow for the geometrical aspect ratios r=0.125 and r=0.375. The numerical results demonstrate that the transition scenario to transitional flow regimes depends on the aspect ratio. For r=0.375, the transition scenario is characterized by one Hopf flow bifurcation in a frequency-doubling transition scenario, where further increases in the Reynolds number always lead to periodic flows; whereas, for r=0.125, the transition scenario is characterized by a first Hopf flow bifurcation from a laminar to a time-dependent periodic flow and a second Hopf flow bifurcation from a periodic to a quasiperiodic flow. For r=0.125, the flow bifurcation scenario is similar to the Ruelle–Takens–Newhouse (RTN) transition scenario to Eulerian chaos observed in asymmetric wavy and grooved channels. The periodic and quasiperiodic flows are characterized by fundamental frequencies ω1, and ω1 and ω2, respectively. For the aspect ratio r=0.375, the Nusselt number increases slightly as the Reynolds number increases in the laminar regime until it reaches a critical Reynolds number of Rec126. As the flow becomes periodic, and then quasiperiodic, the Nusselt number continuously increases with respect to the laminar regime, up to a factor of 4, which represents a significant heat transfer enhancement due to a better flow mixing.

1.
Ghaddar
,
N. K.
,
Korczak
,
K. Z.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
, 1986, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-Sustained Oscillations
,”
J. Fluid Mech.
0022-1120,
163
, pp.
99
127
.
2.
Amon
,
C. H.
, and
Mikic
,
B. B.
, 1990, “
Numerical Prediction of Convective Heat Transfer in Self-Sustained Oscillatory Flow
,”
J. Thermophys. Heat Transfer
0887-8722,
4
, pp.
239
246
.
3.
Greiner
,
M.
, 1991, “
An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1383
1391
.
4.
Greiner
,
M.
,
Chen
,
R. F.
, and
Wirtz
,
R. A.
, 1995, “
Augmented Heat Transfer in a Recovery Passage Downstream From a Grooved Section: An Example of Uncoupled Heat/Momentum Transport
,”
ASME J. Heat Transfer
0022-1481,
117
(
2
), pp.
303
308
.
5.
Greiner
,
M.
,
Faulkner
,
R. J.
,
Van
,
V. T.
,
Tufo
,
H. M.
, and
Fischer
,
P. F.
, 2000, “
Simulations of Three-Dimensional Flow and Augmented Heat Transfer in a Symmetrically Grooved Channel
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
653
660
.
6.
Greiner
,
M.
,
Fischer
,
P. F.
, and
Tufo
,
H. M.
, 2002, “
Two-Dimensional Simulations of Enhanced Heat Transfer in an Intermittently Grooved Channel
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
538
545
.
7.
Pereira
,
J. C. F.
, and
Sousa
,
J. M. M.
, 1993, “
Finite Volume Calculations of Self-Sustained Oscillations in a Grooved Channels
,”
J. Comput. Phys.
0021-9991,
106
, pp.
19
29
.
8.
Farhanieh
,
B.
,
Herman
,
C.
, and
Sunden
,
B.
, 1993, “
Numerical and Experimental Analysis of Laminar Fluid Flow and Forced Convection Heat Transfer in a Grooved Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
1609
1617
.
9.
Nigen
,
J. S.
, and
Amon
,
C. H.
, 1994, “
Time-Dependent Conjugate Heat Transfer Characteristics of Self-Sustained Oscillatory Flows in a Grooved Channel
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
499
507
.
10.
Wirtz
,
R. A.
,
Huang
,
F.
, and
Greiner
,
M.
, 1999, “
Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
236
239
.
11.
Nishimura
,
T.
,
Kunitsugu
,
K.
, and
Morega
,
A. M.
, 1998, “
Fluid Mixing and Mass Transfer Enhancement in Grooved Channels for Pulsatile Flow
,”
J. Enhanced Heat Transfer
1065-5131,
5
, pp.
23
27
.
12.
Nishimura
,
T.
,
Oka
,
N.
,
Yoshinaka
,
Y.
, and
Kunitsugu
,
K.
, 2000, “
Influence of Imposed Oscillatory Frequency on Mass Transfer Enhancement of Grooved Channels for Pulsatile Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2365
2374
.
13.
Adachi
,
T.
, and
Uehara
,
H.
, 2001, “
Correlation Between Heat Transfer and Pressure Drop in Channels With Periodically Grooved Parts
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4333
4343
.
14.
Herman
,
C.
, and
Kang
,
E.
, 2002, “
Heat Transfer Enhancement in a Grooved Channel With Curved Vanes
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3741
3757
.
15.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1994, “
Transition to Chaos in Converging-Diverging Channel Flows: Ruelle–Takens–Newhouse Scenario
,”
Phys. Fluids
1070-6631,
6
(
6
), pp.
1994
2002
.
16.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1996, “
Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging-Diverging Channels
,”
J. Fluid Mech.
0022-1120,
321
, pp.
25
57
.
17.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1998, “
Convective Heat Transfer and Flow Mixing in Converging-Diverging Channel Flows
,”
Proceedings of the ASME Heat Transfer Division
, Vol.
1
,
ASME
,
New York
, pp.
61
68
.
18.
Wang
,
G.
, and
Vanka
,
S. P.
, 1995, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
17
), pp.
3219
3230
.
19.
Wang
,
C. C.
, and
Chen
,
C. K.
, 2002, “
Forced Convection in a Wavy-Wall Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2587
2595
.
20.
Stephanoff
,
K. D.
,
Sobey
,
I. J.
, and
Belhouse
,
B. J.
, 1980, “
On Flow Through Furrowed Channels. Part 2. Observed Flow Patterns
,”
J. Fluid Mech.
0022-1120,
96
, pp.
27
32
.
21.
Nishimura
,
T.
,
Murakami
,
S.
,
Akarawa
,
S.
, and
Kawamura
,
Y.
, 1990, “
Flow Observations and Mass Transfer Characteristics in Symmetrical Wavy-Walled Channels at Moderate Reynolds Numbers for Steady Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
835
845
.
22.
Tatsuo
,
N.
, 1994, “
Oscillatory Flow and Mass Transfer Within Asymmetric and Symmetric Channels With Sinusoidal Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
30
, pp.
269
278
.
23.
Vyas
,
S.
,
Zhang
,
J.
, and
Manglik
,
R. M.
, 2004, “
Steady Recirculation and Laminar Torced Convection in a Sinusoidal Wavy Channel
,”
ASME J. Heat Transfer
0022-1481,
126
, p.
500
.
24.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
, 2005, “
Low Reynolds Number Forced Convection in Three-dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1439
1449
.
25.
Stalio
,
E.
, and
Piller
,
M.
, 2007, “
Direct Numerical Simulations of Heat Transfer in Converging-Diverging Wavy Channels
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
769
777
.
26.
Morimoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
, 2008, “
Higher Performance Recuperator With Oblique Wavy Walls
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
101801
.
27.
Fabbri
,
G.
, 2000, “
Heat Transfer Optimization in Corrugated Wall Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
4299
4310
.
28.
Patera
,
A. T.
, 1984, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
0021-9991,
54
(
3
), pp.
468
488
.
29.
Ye
,
A.
, and
Shimizu
,
M.
, 2001, “
Augmented Longitudinal Diffusion in Grooved Tubes for Oscillatory Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
633
644
.
30.
Del Valle
,
M.
,
Carrasco
,
A. M.
, and
Guzmán
,
A. M.
, 2002, “
Flow Transitions and Heat Transfer in Open Block Tandem Channels
,”
ITherm 2002, International Conference on Thermal, Mechanics and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 29–Jun. 1.
31.
Araya
,
P. E.
, 2001, “
Estudio y Análisis 2D del Flujo Laminar-Transicional y la Transferencia de Calor en un Canal de Paredes Sinusoidales Paralelas
,” ME thesis, Universidad de Santiago de Chile, Santiago, Chile.
32.
Urzua
,
F.
, 2005, “
Espectros de Fourier, Pseudo Espacio de Fase y Exponentes de Lyapounov en el Transporte de Fluido y Calor en Canales Sinusoidales Paralelos Asimétricos
,” ME thesis, Universidad de Santiago de Chile, Santiago, Chile.
33.
Cardenas
,
M. J.
, 2006, “
Mezclado de Flujo en un Canal de Paredes Sinusoidales Asimétricas Cerca de las Bifurcaciones del Flujo
,” ME thesis, Universidad de Santiago de Chile, Santiago, Chile.
34.
Hormazabal
,
R. A.
, 2006, “
Determinación y Evaluación Numérica de Características Lagrangianas de un Flujo Laminar-Transicional en Canales Simétricos Ondulados
,” ME thesis, Universidad de Santiago de Chile, Chile.
35.
Aracena
,
T. A.
, 2006, “
Frequency-Doubling Escenario de Transición en Canales Sinusoidales Simétricos
,” ME thesis, Universidad de Santiago de Chile, Chile.
36.
Del Valle
,
M.
, 2001, “
Estudio y Análisis Mediante Simulaciones Computacionales de la Mecánica de Fluidos y Transferencia de Calor en Canales con Irregularidades Geométricas
,” ME thesis, Universidad de Santiago de Chile, Santiago, Chile.
You do not currently have access to this content.