In this paper we are concerned with the solution of a Robin boundary conditioned problem associated with the local heat transfer equation. The results are obtained using both symmetrical system features and expansions of a Boubaker polynomial subsequence. The yielded profile is compared with some recently proposed models.

1.
Masood
,
K.
, and
Zaman
,
F. D.
, 2004, “
Investigation of the Initial Inverse Problem in the Heat Equation
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
294
296
.
2.
Vynnycky
,
M.
,
Ferrari
,
J.
, and
Lior
,
N.
, 2003, “
Some Analytical and Numerical Solutions to Inverse Problems Applied to Optimizing Phase-Transformation Tracking in Gas Quenching
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1
10
.
3.
Haji-Sheikh
,
A.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
, 2002, “
Certain Anomalies in the Analysis of Hyperbolic Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
307
319
.
4.
Pacheco-Vega
,
A.
,
Pacheco
,
J. R.
, and
Rodić
,
T.
, 2007, “
A General Scheme for the Boundary Conditions in Convective and Diffusive Heat Transfer With Immersed Boundary Methods
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1506
1516
.
5.
Boubaker
,
K.
,
Chaouachi
,
A.
,
Amlouk
,
M.
, and
Bouzouita
,
H.
, 2007, “
Enhancement of Pyrolysis Spray Disposal Performance Using Thermal Time-Response to Precursor Uniform Deposition
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
37
, pp.
105
109
.
6.
Ghanouchi
,
J.
,
Labiadh
,
H.
, and
Boubaker
,
K.
, 2008, “
An Attempt to Solve the Heat Transfer Equation in a Model of Pyrolysis Spray Using 4q-Order Boubaker Polynomials
,”
International Journal of Heat and Technology
,
26
(
1
), pp.
49
53
.
7.
Awojoyogbe
,
O. B.
, and
Boubaker
,
K.
, 2009, “
A Solution to Bloch NMR Flow Equations for the Analysis of Homodynamic Functions of Blood Flow System Using m-Boubaker Polynomials
,”
Curr. Appl. Phys.
1567-1739,
9
(
1
), pp.
278
283
.
8.
Boubaker
,
K.
, 2007, “
On Modified Boubaker Polynomials: Some Differential and Analytical Properties of the New Polynomials Issued From an Attempt for Solving Bi-Varied Heat Equation
,”
Trends in Applied Science Research
,
2
(
6
), pp.
540
544
.
9.
The Boubaker–Tuki polynomials (or modified Boubaker polynomials), Planet-Math Encyclopedia, The Mathematics Worldwide Encyclopedia, http://planetmath.org/encyclopedia/BoubakerTurkiPolynomials.htmlhttp://planetmath.org/encyclopedia/BoubakerTurkiPolynomials.html.
10.
Labiadh
,
H.
, and
Boubaker
,
K.
, 2007, “
A Sturm-Liouville Shaped Characteristic Differential Equation as a Guide to Establish a Quasi-Polynomial Expression to the Boubaker Polynomials
,”
Journal of Differential Equations and Control Processes
,
2
, pp.
117
133
. 1817-2172
11.
Boubaker
,
K.
, 2007, “
Les Polynômes de Boubaker, une classe polynomiale qui émane d’un essai de résolution de l’équation de la chaleur
,”
Deuxièmes Journées Méditerranéennes de Math. App.
, Monastir, Tunisie, March.
12.
Slama
,
S.
,
Bessrour
,
J.
,
Boubaker
,
K.
, and
Bouhafs
,
M.
, 2008, “
Investigation of A3 Point Maximal Front Spatial Evolution During Resistance Spot Welding Using 4q-Boubaker Polynomial Sequence
,”
Proceedings of COTUME 2008
, pp.
79
80
.
13.
Boubaker
,
K.
,
Labiadh
,
H.
, and
Bannour
,
A.
, 2008, “
Establishment of a Homogenous Characteristic Differential Equation for the Applied Physics Canonical Formulation-Related Boubaker Polynomials
,”
Journal of Analysis and Computation
,
4
(
2
), pp.
14
18
0973-2861.
14.
Ghrib
,
T.
,
Boubaker
,
K.
, and
Bouhafs
,
M.
, 2008, “
Investigation of Thermal Diffusivity-Microhardness Correlation Extended to Surface-Nitrured Steel Using Boubaker Polynomials Expansion
,”
Mod. Phys. Lett. B
0217-9849,
22
, pp.
2893
2907
.
15.
Boubaker
,
K.
, 2008, “
A Boubaker-Turki Polynomials Solution to Pancreatic Islet Blood Flow Biophysical Equations in the Case of a Preset Monitored Spatial Rotating Field
,”
Research and Reviews in BioSciences
,
2
, pp.
78
81
.
16.
Dada
,
M.
,
Awojoyogbe
,
O. B.
,
Hasler
,
M.
,
Boubaker Ben Mahmoud
,
K.
, and
Bannour
,
A.
, 2008, “
Establishment of a Chebyshev-Dependent Inhomogeneous Second Order Differential Equation for the Applied Physics-Related Boubaker-Turki Polynomials
,”
International Journal of Applications and Applied Mathematics
,
3
, pp.
329
336
1932-9466.
17.
Boubaker
,
K.
, 2008, “
A New Polynomial Sequence as a Guide to Numerical Solutions for Applied-Physics-Related Partial Differential Equations Under Dirichlet-Newman-Type Exogenous Boundary Conditions
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
21
(
2
), pp.
171
177
.
18.
Labiadh
,
H.
, and
Boubaker
,
K.
, 2008, “
A New Analytic Expression as a Guide to Establish a Characteristic Differential Equation to the Heat Equation-Related Boubaker Polynomials
,”
International Journal of Applied Mathematics
,
21
(
2
), pp.
171
177
.
19.
Karem
,
B.
,
Tinggang
,
Z.
, and
Zhuosheng
,
W.
, 2008, “
Limit and Uniqueness of the Boubaker-Zhao Polynomials Single Imaginary Root Sequence
,”
International Journal of Mathematics and Computation
,
1
(
9
), pp.
13
16
.
20.
Richardson
,
G.
, and
Rubinstein
,
J.
, 2000, “
The Mixed Boundary Condition for the Ginzburg-Landau Model in Thin Films
,”
Appl. Math. Lett.
0893-9659,
13
, pp.
97
99
.
21.
Polking
,
J. A.
, and
Bogges
,
D. A.
, 2002,
Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Calvo
,
E.
, and
Garcia
,
L.
, 2001, “
Shape Design Sensitivity Analysis in Elasticity Using the Boundary Element Method
,”
Eng. Anal. Boundary Elem.
0955-7997,
25
, pp.
887
896
.
23.
Kraus
,
A.
,
Aziz
,
A.
, and
Welty
,
J.
, 2001,
Extended Surface Heat Transfer
,
Wiley
,
New York
.
24.
Takaoka
,
H.
, and
Tsutsumi
,
Y.
, 2004, “
Well-Posedness of the Cauchy Problem for the Modified KdV Equation With Periodic Boundary Condition
,”
Int. Math. Res. Notices
1073-7928,
2004
, pp.
3009
3040
.
25.
Beale
,
S. B.
, 2007, “
Use of Streamwise Periodic Boundary Conditions for Problems in Heat and Mass Transfer
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
601
605
.
26.
Grigoriu
,
M.
, 2000, “
A Monte Carlo Solution of Heat Conduction and Poisson Equations
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
40
45
.
You do not currently have access to this content.