In this paper we are concerned with the solution of a Robin boundary conditioned problem associated with the local heat transfer equation. The results are obtained using both symmetrical system features and expansions of a Boubaker polynomial subsequence. The yielded profile is compared with some recently proposed models.
1.
Masood
, K.
, and Zaman
, F. D.
, 2004, “Investigation of the Initial Inverse Problem in the Heat Equation
,” ASME J. Heat Transfer
0022-1481, 126
, pp. 294
–296
.2.
Vynnycky
, M.
, Ferrari
, J.
, and Lior
, N.
, 2003, “Some Analytical and Numerical Solutions to Inverse Problems Applied to Optimizing Phase-Transformation Tracking in Gas Quenching
,” ASME J. Heat Transfer
0022-1481, 125
, pp. 1
–10
.3.
Haji-Sheikh
, A.
, Minkowycz
, W. J.
, and Sparrow
, E. M.
, 2002, “Certain Anomalies in the Analysis of Hyperbolic Heat Conduction
,” ASME J. Heat Transfer
0022-1481, 124
, pp. 307
–319
.4.
Pacheco-Vega
, A.
, Pacheco
, J. R.
, and Rodić
, T.
, 2007, “A General Scheme for the Boundary Conditions in Convective and Diffusive Heat Transfer With Immersed Boundary Methods
,” ASME J. Heat Transfer
0022-1481, 129
, pp. 1506
–1516
.5.
Boubaker
, K.
, Chaouachi
, A.
, Amlouk
, M.
, and Bouzouita
, H.
, 2007, “Enhancement of Pyrolysis Spray Disposal Performance Using Thermal Time-Response to Precursor Uniform Deposition
,” Eur. Phys. J.: Appl. Phys.
1286-0042, 37
, pp. 105
–109
.6.
Ghanouchi
, J.
, Labiadh
, H.
, and Boubaker
, K.
, 2008, “An Attempt to Solve the Heat Transfer Equation in a Model of Pyrolysis Spray Using 4q-Order Boubaker Polynomials
,” International Journal of Heat and Technology
, 26
(1
), pp. 49
–53
.7.
Awojoyogbe
, O. B.
, and Boubaker
, K.
, 2009, “A Solution to Bloch NMR Flow Equations for the Analysis of Homodynamic Functions of Blood Flow System Using m-Boubaker Polynomials
,” Curr. Appl. Phys.
1567-1739, 9
(1
), pp. 278
–283
.8.
Boubaker
, K.
, 2007, “On Modified Boubaker Polynomials: Some Differential and Analytical Properties of the New Polynomials Issued From an Attempt for Solving Bi-Varied Heat Equation
,” Trends in Applied Science Research
, 2
(6
), pp. 540
–544
.9.
The Boubaker–Tuki polynomials (or modified Boubaker polynomials), Planet-Math Encyclopedia, The Mathematics Worldwide Encyclopedia, http://planetmath.org/encyclopedia/BoubakerTurkiPolynomials.htmlhttp://planetmath.org/encyclopedia/BoubakerTurkiPolynomials.html.
10.
Labiadh
, H.
, and Boubaker
, K.
, 2007, “A Sturm-Liouville Shaped Characteristic Differential Equation as a Guide to Establish a Quasi-Polynomial Expression to the Boubaker Polynomials
,” Journal of Differential Equations and Control Processes
, 2
, pp. 117
–133
. 1817-217211.
Boubaker
, K.
, 2007, “Les Polynômes de Boubaker, une classe polynomiale qui émane d’un essai de résolution de l’équation de la chaleur
,” Deuxièmes Journées Méditerranéennes de Math. App.
, Monastir, Tunisie, March.12.
Slama
, S.
, Bessrour
, J.
, Boubaker
, K.
, and Bouhafs
, M.
, 2008, “Investigation of A3 Point Maximal Front Spatial Evolution During Resistance Spot Welding Using 4q-Boubaker Polynomial Sequence
,” Proceedings of COTUME 2008
, pp. 79
–80
.13.
Boubaker
, K.
, Labiadh
, H.
, and Bannour
, A.
, 2008, “Establishment of a Homogenous Characteristic Differential Equation for the Applied Physics Canonical Formulation-Related Boubaker Polynomials
,” Journal of Analysis and Computation
, 4
(2
), pp. 14
–18
0973-2861.14.
Ghrib
, T.
, Boubaker
, K.
, and Bouhafs
, M.
, 2008, “Investigation of Thermal Diffusivity-Microhardness Correlation Extended to Surface-Nitrured Steel Using Boubaker Polynomials Expansion
,” Mod. Phys. Lett. B
0217-9849, 22
, pp. 2893
–2907
.15.
Boubaker
, K.
, 2008, “A Boubaker-Turki Polynomials Solution to Pancreatic Islet Blood Flow Biophysical Equations in the Case of a Preset Monitored Spatial Rotating Field
,” Research and Reviews in BioSciences
, 2
, pp. 78
–81
.16.
Dada
, M.
, Awojoyogbe
, O. B.
, Hasler
, M.
, Boubaker Ben Mahmoud
, K.
, and Bannour
, A.
, 2008, “Establishment of a Chebyshev-Dependent Inhomogeneous Second Order Differential Equation for the Applied Physics-Related Boubaker-Turki Polynomials
,” International Journal of Applications and Applied Mathematics
, 3
, pp. 329
–336
1932-9466.17.
Boubaker
, K.
, 2008, “A New Polynomial Sequence as a Guide to Numerical Solutions for Applied-Physics-Related Partial Differential Equations Under Dirichlet-Newman-Type Exogenous Boundary Conditions
,” Numer. Methods Partial Differ. Equ.
0749-159X, 21
(2
), pp. 171
–177
.18.
Labiadh
, H.
, and Boubaker
, K.
, 2008, “A New Analytic Expression as a Guide to Establish a Characteristic Differential Equation to the Heat Equation-Related Boubaker Polynomials
,” International Journal of Applied Mathematics
, 21
(2
), pp. 171
–177
.19.
Karem
, B.
, Tinggang
, Z.
, and Zhuosheng
, W.
, 2008, “Limit and Uniqueness of the Boubaker-Zhao Polynomials Single Imaginary Root Sequence
,” International Journal of Mathematics and Computation
, 1
(9
), pp. 13
–16
.20.
Richardson
, G.
, and Rubinstein
, J.
, 2000, “The Mixed Boundary Condition for the Ginzburg-Landau Model in Thin Films
,” Appl. Math. Lett.
0893-9659, 13
, pp. 97
–99
.21.
Polking
, J. A.
, and Bogges
, D. A.
, 2002, Differential Equations
, Prentice-Hall
, Englewood Cliffs, NJ
.22.
Calvo
, E.
, and Garcia
, L.
, 2001, “Shape Design Sensitivity Analysis in Elasticity Using the Boundary Element Method
,” Eng. Anal. Boundary Elem.
0955-7997, 25
, pp. 887
–896
.23.
Kraus
, A.
, Aziz
, A.
, and Welty
, J.
, 2001, Extended Surface Heat Transfer
, Wiley
, New York
.24.
Takaoka
, H.
, and Tsutsumi
, Y.
, 2004, “Well-Posedness of the Cauchy Problem for the Modified KdV Equation With Periodic Boundary Condition
,” Int. Math. Res. Notices
1073-7928, 2004
, pp. 3009
–3040
.25.
Beale
, S. B.
, 2007, “Use of Streamwise Periodic Boundary Conditions for Problems in Heat and Mass Transfer
,” ASME J. Heat Transfer
0022-1481, 129
, pp. 601
–605
.26.
Grigoriu
, M.
, 2000, “A Monte Carlo Solution of Heat Conduction and Poisson Equations
,” ASME J. Heat Transfer
0022-1481, 122
, pp. 40
–45
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.