In this paper, we consider solving for a coefficient inverse problem in the parabolic equation. A new numerical method for the identification of the space-dependent coefficient is developed in a reproducing kernel space. The coefficients can be solved by a lower triangle linear system. Some numerical experiments are presented to show the efficiency of the proposed method.

1.
Duchateau
,
P. C.
, 1995, “
Monotonicity and Invertibility of Coefficients-to-Data Mapping for Parabolic Inverse Problems
,”
SIAM J. Math. Anal.
0036-1410,
26
, pp.
1473
1487
.
2.
Shidfar
,
A.
, and
Azary
,
H.
, 1997, “
An Inverse Problem for a Nonlinear Diffusion Equation
,”
Nonlinear Anal. Theory, Methods Appl.
0362-546X,
28
, pp.
589
593
.
3.
Cannon
,
J. R.
, and
Duchateau
,
P. C.
, 1978, “
Determination of Unknown Coefficients in Parabolic Operators From Overspecified Initial Boundary Data
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
503
507
.
4.
Muzylev
,
V.
, 1980, “
Uniqueness Theorems for Some Converse Problems of Heat Conduction
,”
USSR Comput. Math. Math. Phys.
0041-5553,
20
, pp.
120
134
.
5.
Alifanov
,
O. M.
,
Artyukhin
,
E. A.
, and
Rumyantsev
,
S. V.
, 1988,
Extreme Methods for Solving Ill-Posed Problems With Application to Inverse Heat Transfer Problems
,
Nauka
,
Moscow
, in Russian.
6.
Fatullayev
,
A. G.
,
Can
,
E.
, and
Gasilov
,
N.
, 2006, “
Comparing Numerical Methods for Inverse Coefficient Problem in Parabolic Equation
,”
Appl. Math. Comput.
0096-3003,
179
, pp.
567
571
.
7.
Chen
,
Z.
, and
Lin
,
Y.
, 2008, “
The Exact Solution of a Linear Integral Equation With Weakly Singular Kernel
,”
J. Math. Anal. Appl.
0022-247X,
344
, pp.
726
734
.
8.
Cui
,
M.
, and
Lin
,
Y.
, 2008,
Nonlinear Numerical Analysis in the Reproducing Kernel Space
,
Nova Science
,
New York
.
9.
Aronszajn
,
N.
, 1950, “
Theory of Reproducing Kernels
,”
Trans. Am. Math. Soc.
0002-9947,
68
, pp.
337
404
.
You do not currently have access to this content.