We present here the heat-transfer and fluid flow analysis of an acoustically levitated flattened disk-shaped liquid drop. The interest in this work arises from the noncontact measurement of the thermophysical properties of liquids. Such techniques have application to liquids in the undercooled state, i.e., the situation when a liquid stays in a fluidic state even when the temperature falls below the normal freezing point. This can happen when, for example, a liquid sample is held in a levitated state. Since such states are easily disrupted by measurement probes, noncontact methods are needed. We have employed a technique involving the use of acoustically levitated samples of the liquid. A thermal stimulus in the form of laser heating causes thermocapillary motion with flow characteristics depending on the thermophysical properties of the liquid. In a gravity field, buoyancy is disruptive to this thermocapillary flow, masking it with the dominant natural convection. As one approach to minimizing the effects of buoyancy, the drop was flattened (by intense acoustic pressure) in the form of a horizontal disk, about thick. As a result, with very little gravitational potential, and with most of the buoyant flow suppressed, thermocapillary flow remained the dominant form of fluid motion within the drop. This flow field is visualizable and subsequent analysis for the inverse problem of the thermal property can be conducted. This calls for numerical calculations involving a heat-transfer model for the flattened drop. With the presence of an acoustic field, the heat-transfer analysis requires information about the corresponding Biot number. In the presence of a high-frequency acoustic field, the steady streaming originates in a thin shear-wave layer, known as the Stokes layer, at a surface of the drop. The streaming develops into the main fluid, and is referred to as the outer streaming. Since the Stokes layer is asymptotically thin in comparison to the length scale of the problem, the outer streaming can be formally described by an effective slip velocity at the boundary. The presence of the thin Stokes layer, and the slip condition at the interface, changes the character of the heat-transfer mechanism, which is inherently different from the traditional boundary layer. The current analysis consists of a detailed semianalytical calculation of the flow field and the heat-transfer characteristics of a levitated drop in the presence of an acoustic field.
Skip Nav Destination
e-mail: sadhal@usc.edu
Article navigation
September 2008
This article was originally published in
Journal of Heat Transfer
Research Papers
An Analytical Model of External Streaming and Heat Transfer for a Levitated Flattened Liquid Drop
Sungho Lee,
Sungho Lee
Research and Development Division,
Hyundai Motor Company
, Yongin 446-912, Korea
Search for other works by this author on:
S. S. Sadhal,
S. S. Sadhal
Aerospace and Mechanical Engineering,
e-mail: sadhal@usc.edu
University of Southern California
, Los Angeles, CA 90089-1453
Search for other works by this author on:
Alexei Ye. Rednikov
Alexei Ye. Rednikov
Aerospace and Mechanical Engineering,
University of Southern California
, Los Angeles, CA 90089-1453
Search for other works by this author on:
Sungho Lee
Research and Development Division,
Hyundai Motor Company
, Yongin 446-912, Korea
S. S. Sadhal
Aerospace and Mechanical Engineering,
University of Southern California
, Los Angeles, CA 90089-1453e-mail: sadhal@usc.edu
Alexei Ye. Rednikov
Aerospace and Mechanical Engineering,
University of Southern California
, Los Angeles, CA 90089-1453J. Heat Transfer. Sep 2008, 130(9): 091602 (8 pages)
Published Online: July 10, 2008
Article history
Received:
June 21, 2007
Revised:
November 5, 2007
Published:
July 10, 2008
Citation
Lee, S., Sadhal, S. S., and Rednikov, A. Y. (July 10, 2008). "An Analytical Model of External Streaming and Heat Transfer for a Levitated Flattened Liquid Drop." ASME. J. Heat Transfer. September 2008; 130(9): 091602. https://doi.org/10.1115/1.2943305
Download citation file:
Get Email Alerts
Cited By
Related Articles
Buoyancy Effects on Thermal Boundary Layer Over a Vertical Plate With a Convective Surface Boundary Condition
J. Fluids Eng (April,2010)
Performance of Rectangular Fin in Wet Conditions: Visualization and Wet Fin Efficiency
J. Heat Transfer (October,2001)
Computational Analysis of Binary-Fluid Heat and Mass Transfer in Falling Films and Droplets
J. Heat Transfer (August,2009)
Falling Film Transitions on Plain and Enhanced Tubes
J. Heat Transfer (June,2002)
Related Chapters
Extended Surfaces
Thermal Management of Microelectronic Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition
Effects of Acoustic Parameters and Bulk Fluid Properties on Acoustic Droplet Vaporization Threshold of Perfluoropentane Droplets
Proceedings of the 10th International Symposium on Cavitation (CAV2018)