Single-walled carbon nanotubes (SWNTs) are considered as promising filler materials for improving the thermal conductivity of conventional polymers. We carefully investigated the thermal conductivity of SWNT poly(methylmethacrylate) (PMMA) nanocomposites with random SWNT orientations and loading up to 9vol% using the comparative technique. The composites were prepared by coagulation and exhibit 250% improvement in the thermal conductivity at 9vol%. The experimental results were analyzed using the versatile Nielsen model, which accounts for many important factors, including filler aspect ratio and maximum packing fraction. In this work, the aspect ratio was determined by atomic force microscopy (AFM) and used as an input parameter in the Nielsen model. We obtained good agreement between our results and the predictions of the Nielsen model, which indicates that higher aspect ratio fillers are needed to achieve further enhancement. Our analysis also suggests that improved thermal contact between the SWNT network and the matrix material would be beneficial.

1.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007
84
(
20
), pp.
4613
4616
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951
79
(
14
), pp.
2252
2254
.
3.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951
80
(
15
), pp.
2767
2769
.
4.
Choi
,
E. S.
,
Brooks
,
J. S.
,
Eaton
,
D. L.
,
Al-Haik
,
M. S.
,
Hussaini
,
M. Y.
,
Garmestani
,
H.
,
Li
,
D.
, and
Dahmen
,
K.
, 2003, “
Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by Magnetic Field Processing
,”
J. Appl. Phys.
0021-8979
94
(
9
), pp.
6034
6039
.
5.
Xie
,
H. Q.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979
94
(
8
), pp.
4967
4971
.
6.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L. P.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122
2
(
11
), pp.
731
734
.
7.
Shenogin
,
S.
,
Xue
,
L. P.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2004, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8136
8144
.
8.
Brand
,
S.
, 2004, “
The Effect of Purification, Sonication and Nitric Acid Reflux on the Length and Diameter Distribution of Single Walled Carbon Nanotubes
,” MS thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
9.
Du
,
F. M.
,
Fischer
,
J. E.
, and
Winey
,
K. I.
, 2003, “
Coagulation Method for Preparing Single-Walled Carbon Nanotube/Poly(methyl Methacrylate) Composites and Their Modulus, Electrical Conductivity, and Thermal Stability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266
41
(
24
), pp.
3333
3338
.
10.
Nikolaev
,
P.
,
Bronikowski
,
M. J.
,
Bradley
,
R. K.
,
Rohmund
,
F.
,
Colbert
,
D. T.
,
Smith
,
K. A.
, and
Smalley
,
R. E.
, 1999, “
Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes From Carbon Monoxide
,”
Chem. Phys. Lett.
0009-2614,
313
(
1–2
), pp.
91
97
.
11.
Llaguno
,
M. C.
,
Hone
,
J.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2001, “
Thermal Conductivity of Single Wall Carbon Nanotubes: Diameter and Annealing Dependence
,” in
Molecular Nanostructures
,
H.
Kuzmany
,
J.
Fink
,
M.
Mehring
, and
S.
Roth
, eds., AIP Conf. Proc. No. 591, New York, pp.
384
387
.
12.
Liu
,
J.
,
Casavant
,
M. J.
,
Cox
,
M.
,
Walters
,
D. A.
,
Boul
,
P.
,
Lu
,
W.
,
Rimberg
,
A. J.
,
Smith
,
K. A.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1999, “
Controlled Deposition of Individual Single-Walled Carbon Nanotubes on Chemically Functionalized Templates
,”
Chem. Phys. Lett.
0009-2614,
303
(
1–2
), pp.
125
129
.
13.
Nielsen
,
L. E.
, 1974, “
The Thermal and Electrical Conductivity of Two-Phase Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313
13
(
1
), pp.
17
20
.
14.
Milewski
,
J. V.
, 1978, “
Combined Packing of Rods and Spheres in Reinforcing Plastics
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321
17
(
4
), pp.
363
366
.
15.
Brandrup
,
J.
,
Immergut
,
E. H.
, and
Grulke
,
E. A.
, 1999,
Polymer Handbook
,
John Wiley & Sons, Inc.
, New York, V/88.
16.
We cannot distinguish between the release of short tubes present in the initial material during sonication/exfoliation, versus cutting of tubes during sonication and dispersion.
You do not currently have access to this content.