Heat transfer inside thermally expandable and flexible fluidic thin-film channels is analyzed in this work. Two categories are analyzed: the first category is when the upper plate of the thin film is mobile and flexible, and the second is when the side plates of the thin film are flexible and mobile. The expansion in the thin-film heights (category I) or widths (category II) are linearly related to the local fluid pressure and the local temperature of the heated plate based on the principles of linear elasticity and constant volumetric thermal expansion coefficient. The governing Reynolds, momentum, and energy equations are properly nondimensionalized and solved numerically using an implicit method. The Peclet number, stiffness parameter, thermal expansion parameter, and aspect ratio are found to be the main controlling parameters. It is found that thermally expandable flexible thin films that belong to category I can produce significant increase in cooling as the heating load increases, especially when operated at lower Peclet numbers, whereas the cooling effect for those that belong to category II is almost unaffected by the expansion. This work paves the way to practically utilize thermally expandable flexible thin films, especially in MEMS and electronic cooling applications.

1.
Moon
,
S. H.
,
Yun
,
H. G.
,
Hwang
,
G.
, and
Choy
,
T. G.
, 2000, “
Investigation of Packaged Miniature Heat Pipe for Notebook PC Cooling
,”
Int. J. Microcircuits Electron. Packag.
1063-1674,
23
, pp.
488
493
.
2.
Sugumar
,
D.
, and
Tio
,
K. K.
, 2006, “
Thermal Analysis of Inclined Micro Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
198
202
.
3.
Lefevre
,
F.
, and
Lallemand
,
M.
, 2006, “
Coupled Thermal and Hydrodynamic Models of Flat Micro Heat Pipes for the Cooling of Multiple Electronic Components
,”
ASME J. Heat Transfer
0022-1481,
49
, pp.
1375
1383
.
4.
Tuckerman
,
D. B.
, and
Pease
,
D. B.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
, pp.
126
129
.
5.
Missaggia
,
L. J.
,
Walpole
,
J. N.
,
Liau
,
Z. L.
, and
Philips
,
R. J.
, 1989, “
Microchannel Heat Sinks for Two Dimensional High-Power-Density Diode Laser Arrays
,”
IEEE J. Quantum Electron.
0018-9197,
25
,
1988
1992
.
6.
Kleiner
,
M. B.
,
Kuhn
,
S. A.
, and
Haberger
,
K.
, 1995, “
High Performance Forced Air Cooling Scheme Employing Micro-Channel Heat Exchangers
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
, pp.
795
804
.
7.
Samalam
,
V. K.
, 1989, “
Convective Heat Transfer in Micro-Channels
,”
J. Electron. Mater.
0361-5235,
18
, pp.
611
617
.
8.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1555
1568
.
9.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
399
415
.
10.
Vafai
,
K.
, and
Zhu
,
L.
, 1999, “
Analysis of a Two-Layered Micro Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2287
2297
.
11.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
149
157
.
12.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
116
, pp.
290
305
.
13.
Hadim
,
A.
, 1994, “
Forced Convection in a Porous Channel With Localized Heat Sources
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
465
472
.
14.
Huang
,
P. C.
, and
Vafai
,
K.
, 1994, “
Analysis of Forced Convection Enhancement in a Channel Using Porous Blocks
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
562
573
.
15.
Huang
,
P. C.
, and
Vafai
,
K.
, 1994, “
Internal Heat Transfer Augmentation in a Parallel Plate Channel Using an Alternate Set of Porous Cavity-Block Obstacles
,”
Numer. Heat Transfer, Part A
1040-7782,
25
, pp.
519
540
.
16.
Khaled
,
A.-R. A.
, and
Vafai
,
K.
, 2002, “
Flow and Heat Transfer Inside Thin Films Supported by Soft Seals in The Presence of Internal and External Pressure Pulsations
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
5107
5115
.
17.
Khaled
,
A.-R. A.
, and
Vafai
,
K.
, 2004, “
Control of Exit Flow and Thermal Conditions Using Two-Layered Thin Films Supported by Flexible Complex Seals
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1599
1611
.
18.
Khaled
,
A.-R. A.
, and
Vafai
,
K.
, 2005, “
Analysis of Flexible Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1739
1746
.
19.
Khaled
,
A.-R. A.
, and
Vafai
,
K.
, 2003, “
Cooling Enhancements in Thin Films Supported by Flexible Complex Seals in The Presence of Ultrafine Suspensions
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
916
925
.
20.
Norton
,
R. L.
, 1998,
Machine Design An Integrated Approach
, 2nd ed.,
Prentice-Hall
, Englewood Cliffs, NJ.
21.
Blottner
,
F. G.
, 1970, “
Finite-Difference Methods of Solution of the Boundary-Layer Equations
,”
AIAA J.
0001-1452,
8
, pp.
193
205
.
You do not currently have access to this content.