This work numerically investigated the steady state fluid flow and heat transfer behaviors associated with a sintered porous channel that contains periodically spaced heated blocks. Some typical cases are experimentally examined in this study. The relevant varied parameters were the average bead diameter (d), the relative block height (hH), the relative block width (wH), the relative block spacing (sH), and the Reynolds number (Re). The numerical results revealed a lack of global recirculation in regions between the blocks, where the forced convective heat transfer was low, but the heat in those regions was transferred to the metallic block by conduction through porous media, before being dissipated into the fluid that passed over the zone above the heated block. Additionally, the relevant parameters considerably affect the local Nusselt number distribution along the periphery of the block surface. The average Nusselt number for each block decreased along the direction of the flow until it reached its fully developed value. The Nusselt number increased with hH or Re in the fully developed region. The effect of hH on the fully developed Nusselt number became stronger as Re increased and wH decreased. The effects of sH and d on the fully developed Nusselt number were insignificant over the ranges of parameters considered herein (d=0.7 and 1.16mm, hH=0.12-0.59, wH=0.24-0.47, sH=0.24-0.7, and Re=1019-5059). Finally, this study summarized the average Nusselt number for different configurations of the heated blocks with various d, hH, wH, sH, and Re.

1.
Mahalingam
,
M.
, and
Berg
,
H. M.
, 1984, “
Thermal Trend in Component Level Packaging
,”
Int. J. Hybrid Microelectron.
0277-8270,
7
, pp.
1
9
.
2.
Mahalingam
,
M.
, 1985, “
Thermal Management in Semiconductor Device Packaging
,”
Proc. IEEE
0018-9219,
73
, pp.
1396
1404
.
3.
Kang
,
B. H.
,
Jaluria
,
Y.
, and
Tewari
,
S. S.
, 1990, “
Mixed Convection Transport From an Isolated Heat Source Module on a Horizontal Plate
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
653
661
.
4.
Kim
,
S. Y.
,
Sung
,
H. J.
, and
Hyun
,
J. M.
, 1992, “
Mixed Convection from Multiple-Layered Boards With Cross-Streamwise Periodic Boundary Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
2941
2952
.
5.
Young
,
T. J.
, and
Vafai
,
K.
, 1998, “
Convective Cooling of a Heated Obstacle in a Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3131
3148
.
6.
Young
,
T. J.
, and
Vafai
,
K.
, 1998, “
Convective Flow and Heat Transfer in a Channel Containing Multiple Heated Obstacles
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3279
3298
.
7.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
301
309
.
8.
Chou
,
F. C.
,
Lien
,
W. Y.
, and
Lin
,
S. H.
, 1992, “
Analysis and Experiment of Non-Darcian Convection in Horizontal Square Packed-Sphere Channels—1. Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
195
205
.
9.
Hwang
,
G. J.
, and
Chao
,
C. H.
, 1994, “
Heat Transfer Measurement and Analysis for Sintered Porous Channels
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
456
464
.
10.
Hwang
,
G. J.
,
Wu
,
C. C.
, and
Chao
,
C. H.
, 1995, “
Investigation of Non-Darcian Forced Convection in an Asymmetrically Heated Sintered Porous Channel
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
725
732
.
11.
Peterson
,
G. P.
, and
Chang
,
C. S.
, 1998, “
Two-phase Heat Dissipation Utilizing Porous-Channels of High-Conductivity Material
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
243
252
.
12.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
13.
Angirasa
,
D.
, 2002, “
Forced Convective Heat Transfer in Metallic Fibrous Materials
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
739
745
.
14.
Angirasa
,
D.
, 2002, “
Experimental Investigation of Forced Convection Heat Transfer Augmentation With Metallic Fibrous Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
919
922
.
15.
Jiang
,
P. X.
,
Li
,
M.
,
Lu
,
T. J.
,
Yu
,
L.
, and
Ren
,
Z. P.
, 2004, “
Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2085
2096
.
16.
Jiang
,
P. X.
,
Li
,
M.
,
Ma
,
Y. C.
, and
Ren
,
Z. P.
, 2004, “
Boundary Conditions and Wall Effect for Forced Convection Heat Transfer in Sintered Porous Plate Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2073
2083
.
17.
Rizk
,
T. A.
, and
Kleinstreuer
,
C.
, 1991, “
Forced Convective Cooling of a Linear Array of Blocks in Open and Porous Matrix Channels
,”
Heat Transfer Eng.
0145-7632,
12
, pp.
40
47
.
18.
Hadim
,
A.
, 1994, “
Forced Convection in Porous Channel With Localized Heat Sources
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
465
472
.
19.
Hadim
,
H. A.
, and
Bethancourt
,
A.
, 1995, “
Numerical Study of Forced Convection in a Partially Porous Channel With Discrete Heat Sources
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
46
51
.
20.
Ould-Amer
,
Y.
,
Chikh
,
S.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
, 1998, “
Forced Convection Cooling Enhancement by Use of Porous Material
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
251
258
.
21.
Huang
,
P. C.
,
Yang
,
C. F.
,
Hwang
,
J. J.
, and
Chiu
,
M. T.
, 2005, “
Enhancement of Forced-Convection Cooling of Multiple Heated Blocks in a Channel Using Porous Covers
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
647
664
.
22.
Slattery
,
J. C.
, 1972,
Momentum, Energy and Mass Transfer in Continua
,
McGraw-Hill
,
New York
, pp.
57
65
.
23.
Martin
,
A. R.
,
Saltiel
,
C.
, and
Shyy
,
W.
, 1998, “
Heat Transfer Enhancement With Porous Inserts in Recirculating Flows
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
458
467
.
24.
Angirasa
,
D.
, and
Peterson
,
G. P.
, 1999, “
Forced Convection Heat Transfer Augmentation in a Channel With a Localized Heat Source Using Fibrous Materials
,”
ASME J. Electron. Packag.
1043-7398,
121
, pp.
1
7
.
25.
Cheng
,
P.
, and
Hsu
,
C. T.
, 1986, “
Applications of Van Driest’s Mixing Length Theory to Transverse Thermal Dispersion in Forced Convective Flow through a Packed Bed
,”
Int. Commun. Heat Mass Transfer
0735-1933,
13
, pp.
613
625
.
26.
Cheng
,
P.
,
Hsu
,
C. T.
, and
Chowdhury
,
A.
, 1988, “
Forced Convection in the Entrance Region of a Packed Channel With Asymmetric Heating
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
946
954
.
27.
Kar
,
K. K.
, and
Dybbs
,
A.
, 1982, “
Internal Heat Transfer Coefficients of Porous Metals
,”
Proc. Winter Annual Meeting of ASME
, Phoenix, AZ, pp.
81
91
.
28.
Gamson
,
B. W.
,
Thodos
,
G.
, and
Hougen
,
O. A.
, 1943, “
Heat, Mass and Momentum Transfer in Flow of Gases
,”
Trans. AIChE
,
39
, pp.
1
35
.
29.
Fu
,
W. S.
, and
Huang
,
H. C.
, 1999, “
Effects of a Random Porosity Model on Heat Transfer Performance of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
13
25
.
30.
Roache
,
P. J.
, 1972,
Computational Fluid Dynamics
,
Hermosa
,
Albuquerque, New Mexico
, pp.
139
173
.
31.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
Hemisphere, New York
, pp.
113
137
.
32.
Hwang
,
G. J.
, and
Cheng
,
K. C.
, 1970, “
Boundary Vorticity Method for Convective Heat Transfer With Secondary Flow Application to the Combined Free and Forced Laminar Convection in Horizontal Tubes
,”
Proc. 4th Int. Heat Transfer Conf.
, Versailles, Paris, Vol.
4
, Paper No. NC3.5.
33.
Lee
,
S. L.
, 1989, “
A Strong Implicit Solver for Two-Dimensional Elliptic Differential Equations
,”
Numer. Heat Transfer, Part B
1040-7790,
16
, pp.
161
178
.
34.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductiv-ity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
35.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, Jan., pp.
3
8
.
36.
Moffat
,
R. J.
, 1986, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
0098-2202,
104
, pp.
250
260
.
37.
Souza Mendes
,
P. R.
, and
Santos
,
W. F. N.
, 1987, “
Heat Transfer and Pressure Drop Experiments in Air-Cooled in Electronic-Component Arrays
,”
J. Thermophys. Heat Transfer
0887-8722,
1
, pp.
373
378
.
38.
Garimella
,
S. V.
, and
Eibeck
,
P. A.
, 1990, “
Heat Transfer Characteristics of an Array of Protruding Elements in Single-Phase Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
2659
2669
.
39.
Lehmann
,
G. L.
, and
Pembroke
,
J.
, 1991, “
Forced Convection Air Cooling of Simulated Low Profile Electronic Components: Part 1-Base Case
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
21
26
.
40.
Jubran
,
B. A.
,
Swiety
,
S. A.
, and
Hamdan
,
M. A.
, 1996, “
Convective Heat Transfer and Pressure Drop Characteristics of Various Array Configurations to Simulate the Cooling of Electronic Modules
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3519
3529
.
You do not currently have access to this content.