The thermal-fluid behaviors in a porous electrode of a proton exchange membrane fuel cell (PEMFC) in contact with an interdigitated gas distributor are investigated numerically. The porous electrode consists of a catalyst layer and a diffusion layer. The heat transfer in the catalyst layer is coupled with species transports via a macroscopic electrochemical model. In the diffusion layer, the energy equations based on the local thermal nonequilibrium (LTNE) are derived to resolve the temperature difference between the solid phase and the fluid phase. Parametric studies include the Reynolds number and the Stanton number (St). Results show that the wall temperature decreases with increasing Stanton number. The maximum wall temperatures occur at the downstream end of the module, while the locations of local minimum wall temperature depend on the Stanton numbers. Moreover, the solid phase and the fluid phase in the diffusion layer are thermally insulated as St1. The diffusion layer becomes local thermal nonequilibrium as the Stanton number around unity. The porous electrode is local thermal equilibrium for St1. Finally, the species concentrations inside the catalyst and diffusion layers are also provided.

1.
Quintard
,
M.
, and
Whitaker
,
S.
, 1995, “
Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison With Numerical Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2779
2796
.
2.
Sahraoui
,
M.
, and
Kaviany
,
M.
, 1994, “
Slip and No-Slip Temperature Boundary Condition at the Interface of Porous, Plain Media: Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
1029
1044
.
3.
Quintard
,
M.
, and
Whitaker
,
S.
, 2000, “
Theoretical Modeling of Transport in Porous Media
,”
Handbook of Heat Transfer in Porous Media
, 1st ed.,
K.
Vafai
, ed.,
Decker
,
New York
.
4.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer
,
Berlin
.
5.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Fictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
6.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
7.
Alazmi
,
B.
, and
Vafai
,
K.
, 2004, “
Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Non-equilibrium on Free Surface Flows Through Porous Media
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
389
399
.
8.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
Am. Inst. Chem. Eng. Symp. Ser.
0065-8812,
37
, pp.
1151
1163
.
9.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
10.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
11.
Ackmann
,
T.
,
de Haart
,
L. G. J.
,
Lehnert
,
W.
, and
Stolten
,
D.
, 2003, “
Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A783
A789
.
12.
Yuan
,
J.
,
Rokni
,
M.
, and
Sunden
,
B.
, 2003, “
Three-Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
809
821
.
13.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along the Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
14.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2001, “
Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2029
2042
.
15.
Ju
,
H.
, and
Wang
,
C. Y.
, 2004, “
Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1954
A1960
.
16.
Um
,
S.
, and
Wang
,
C. Y.
, 2004, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
125
, pp.
40
51
.
17.
Hwang
,
J. J.
, 2006, “
Thermal-Electrochemical Modeling of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A216
A224
.
18.
Meredith
,
R. E.
, and
Tobias
,
C. W.
, 1962, in
Advances in Electrochemistry and Electrochemical Engineering, 2
,
C. W.
Tobias
, ed.,
Interscience
,
New York
.
19.
Hwang
,
J. J.
,
Chen
,
C. K.
,
Savinell
,
R. F.
,
Liu
,
C. C.
, and
Wainright
,
J.
, 2004, “
A Three-Dimensional Numerical Simulation of the Transport Phenomena in the Cathodic Side of a PEMFC
,”
J. Appl. Electrochem.
0021-891X,
34
, pp.
217
224
.
20.
Oldham
,
H.
, and
Myland
,
J.
, 1994,
Fundamentals of Electrochemical Science
,
Academic
,
New York
.
21.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2005, “
Detailed Characteristic Comparison Between Planar and MOLB-Type Sofcs
,”
J. Power Sources
0378-7753,
143
, pp.
75
83
.
22.
Hwang
,
J. J.
,
Chao
,
C. H.
,
Ho
,
W. Y.
,
Chang
,
C. L.
, and
Wang
,
D. Y.
, 2005, “
Effect of Flow Orientation on the Thermal-Electrochemical Transports in a PEM Fuel Cell
,”
J. Power Sources
0378-7753 (in press).
23.
Hwang
,
J. J.
,
Lo
,
K. H.
,
Wang
,
S. H.
, and
Tsay
,
K. C.
, 2001,
The 25th Conference on Theoretical and Applied Mechanics
, Taichung, Taiwan, ROC.
24.
Hwang
,
J. J.
, and
Hwang
,
H. S.
, 2002, “
Parametric Studies of a Double-Cell Stack of PEMFC Using Grafoil Flow-Field Plates
,”
J. Power Sources
0378-7753,
104
, pp.
24
32
.
You do not currently have access to this content.