An experimental investigation of a nanofluid oscillating heat pipe (OHP) was conducted to determine the nanofluid effect on the heat transport capability in an OHP. The nanofluid consisted of HPLC grade water and 1.0vol% diamond nanoparticles of 5-50nm. These diamond nanoparticles settle down in the motionless base fluid. However, the oscillating motion of the OHP suspends the diamond nanoparticles in the working fluid. Experimental results show that the heat transport capability of the OHP significantly increased when it was charged with the nanofluid at a filling ratio of 50%. It was found that the heat transport capability of the OHP depends on the operating temperature. The investigated OHP could reach a thermal resistance of 0.03°CW at a heat input of 336W. The nanofluid OHP investigated here provides a new approach in designing a highly efficient next generation of heat pipe cooling devices.

1.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, eds.
D. A.
Siginer
and
H. P.
Wang
,
The American Society of Mechanical Engineers
, New York, FED-Vol.
231
/MD-Vol.
66
, pp.
99
105
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nano-tube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nano-Fluids Containing Copper Nano-Particles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
4.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
5.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2931
2933
.
6.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003, “
Effect of Nano-Particles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3374
3376
.
7.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
12
), pp.
2407
2419
.
8.
Vassallo
,
P.
,
Kumar
,
R.
,
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
2
), pp.
407
411
.
9.
Backhaus
,
S.
, and
Swift
,
G. W.
, 1999, “
A Thermoacoustic Stirling Heat Engine
,”
Nature (London)
0028-0836,
399
, pp.
335
338
.
10.
Kurzweg
,
U. H.
, 1985, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
J. Heat Transfer
0022-1481,
107
, pp.
459
462
.
11.
Kurzweg
,
U. H.
, and
Zhao
,
L. D.
, 1984, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
0031-9171,
27
, pp.
2624
2627
.
12.
Akachi
,
H.
, 1990, “
Structure of a Heat Pipe
,” U.S. Patent 4,921,041.
13.
Zuo
,
J.
,
North
,
M. T.
, and
Wert
,
K. L.
, 2001, “
High Heat Flux Heat Pipe Mechanism for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
220
225
.
14.
Ma
,
H. B.
,
Maschmann
,
M. R.
, and
Liang
,
S. B.
, 2002, “
Heat Transport Capability in Pulsating Heat Pipes
,” Proceedings of the 8th AIAA/ASME Joint Thermophysica and Heat Transfer Conference, St. Louis, MO, June 24–27,
ASME
, New York.
15.
Khandekar
,
S.
, and
Groll
,
M.
, 2004, “
An Insight into Thermo-Hydrodynamic Coupling in Closed-Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
13
20
.
16.
Khandekar
,
S.
,
Cui
,
X.
, and
Groll
,
M.
, 2002, “
Thermal Performance Modeling of Pulsating Heat Pipes by Artificial Neural Network
,” Heat Pipe Science Technology Application, Proceedings of the 12th International Heat Pipe Conference,
Moscow
, Russia, May 19–24,
Russian Academy of Sciences
, pp.
215
219
.
17.
Liang
,
S. B.
, and
Ma
,
H. B.
, 2003, “
Oscillation Motions in an Oscillating Heat Pipe
,”
Int. Commun. Heat Mass Transfer
0735-1933,
43
(
9
), pp.
493
500
.
18.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
, 2005, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
J. Microfluidics Nanofluidics
,
1
(
4
), pp.
334
342
.
19.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
U. S.
, and
Tirumala
,
M.
, 2006, “
Nanofluid Effect on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
0003-6951,
88
(
14
), pp.
1161
1163
.
20.
Shafii
,
M.
,
Faghri
,
A.
, and
Zhang
,
Y.
, 2001, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
J. Heat Transfer
0022-1481,
123
, pp.
1159
1172
.
21.
Cai
,
Q.
,
Chen
,
R.
, and
Chen
,
C.
, 2002, “
An Investigation of Evaporation, Boiling, and Heat Transport Performance in Pulsating Heat Pipe
,” Proceedings of IMECE2002 ASME International Mechanical Engineering Congress and Exposition,
New Orleans
, November 17–22,
ASME
, New York, pp.
99
104
.
22.
Nikkanen
,
K.
,
Lu
,
C.
, and
Kawaji
,
M.
, 2005, “
Effects of Working Fluid, Fill ratio, and Orientation on Looped and Unlooped Pulsating Heat Pipes
,” 2005 ASME Summer Heat Transfer Conference,
San Francisco
, CA, July 17–22,
ASME
, New York.
You do not currently have access to this content.