Many engineering applications require thermal cycling of granular materials. Since these materials generally have poor effective thermal conductivity various techniques have been proposed to improve bed thermal transport. These include insertion of metal foam with the granular material residing in the interstitial space. The use of metal foam introduces a parasitic thermal capacitance, disrupts packing, and reduces the amount of active material. In order to optimize the combined high porosity metal foam-granular material matrix and study local thermal nonequilibrium, multiple energy equations are required. The interfacial conductance coefficients, specific interface area, and the effective thermal conductivities of the individual components, which are required for a multiple energy equation analysis, are functions of the foam geometry. An ideal three-dimensional geometric model of open-celled Duocell® foam is proposed. Computed tomography is used to acquire foam cell and ligament diameter distribution, ligament shape, and specific surface area for a range of foam parameters to address various shortcomings in the literature. These data are used to evaluate the geometric self-consistency of the proposed geometric model with respect to the intensive and extensive geometry parameters. Experimental thermal conductivity data for the same foam samples are acquired and are used to validate finite element analysis results of the proposed geometric model. A simple relation between density and thermal conductivity ratio is derived using the results. The foam samples tested exhibit a higher dependence on relative density and less dependence on interstitial fluid than data in the literature. The proposed metal foam geometric model is shown to be self-consistent with respect to both its geometric and thermal properties.

1.
Kim
,
K. J.
,
Lloyd
,
G.
,
Razani
,
A.
, and
Feldman
,
K. T.
, 1998, “
Development of Lani5/Cu∕Sn Metal Hydride Powder Composites
,”
Powder Technol.
0032-5910,
99
(
1
), pp.
40
45
.
2.
Lloyd
,
G.
,
Kim
,
K. J.
,
Razani
,
A.
, and
Feldman
,
K. T.
, 1998, “
Thermal Conductivity Measurements of Metal Hydride Compacts Developed for High-Power Reactors
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
2
), pp.
132
137
.
3.
Fleming
,
W. H.
,
Khan
,
J. A.
, and
Rhodes
,
C. A.
, 2001, “
Effective Heat Transfer in a Metal-Hydride-Based Hydrogen Separation Process
,”
Int. J. Hydrogen Energy
0360-3199,
26
(
7
), pp.
711
724
.
4.
Heung
,
L. K.
, 1998, “
On-Board Hydrogen Storage System Using Metal Hydride
,”
Proceedings of the 2nd International Symposium on Hydrogen Power Theoretical and Engineering Solutions
, August 18–22, 1997,
Grimstad, Norway
,
Kluwer Academic Publishers
,
Dordrecht
, The Netherlands, pp.
251
256
.
5.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
466
471
.
6.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
5
), pp.
1017
1031
.
7.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
4
), pp.
827
836
.
8.
Montminy
,
M.
,
Tannenbaum
,
A.
, and
Macosko
,
C.
, 2004, “
The 3-D Structure of Real Polymer Foams
,”
J. Colloid Interface Sci.
0021-9797,
37
(
6
), pp.
501
515
.
9.
Montminy
,
M.
,
Tannenbaum
,
A.
, and
Macosko
,
C.
, 2001, “
New Algorithms for 3-D Imaging and Analysis of Open-Celled Foams
,”
J. Cell. Plast.
0021-955X,
37
(
6
), pp.
501
515
.
10.
Scheffler
,
F.
,
Herrmann
,
R.
,
Schwieger
,
W.
, and
Scheffler
,
M.
, 2004, “
Preparation and Properties of an Electrically Heatable Aluminium Foam/Zeolite Composite
,”
Microporous Mesoporous Mater.
1387-1811,
67
(
1
), pp.
53
59
.
11.
Zhou
,
J.
,
Mercer
,
C.
, and
Soboyejo
,
W. O.
, 2002, “
An Investigation of the Microstructure and Strength of Open-Cell 6101 Aluminum Foams
,”
Metall. Mater. Trans. A
1073-5623,
33
(
5
), pp.
1413
1427
.
12.
Calmidi
,
V.
, and
Mahajan
,
R.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
(
3
), pp.
557
565
.
13.
Phanikumar
,
M.
, and
Mahajan
,
R.
, 2002, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
18
), pp.
3781
3793
.
14.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
, 2004, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
(
2–3
), pp.
193
199
.
15.
Schmierer
,
E. N.
,
Razani
,
A.
,
Melton
,
T.
, and
Keating
,
S.
, 2004b, “
Characterization of High Porosity Open-Celled Metal Foam Using Computed Tomography
,”
Proceedings of 2004 ASME International Mechanical Engineering Congress and RD&D Expo
,
ASME
,
New York
.
16.
Schmierer
,
E. N.
,
Razani
,
A.
,
Paquette
,
J. W.
, and
Kim
,
K. J.
, 2004a, “
Effective Thermal Conductivity of Fully Saturated High Porosity Foam
,”
Proceedings of 2004 ASME Heat Transfer/Fluids Engineering Summer Conference
.
17.
Ozmat
,
B.
,
Leyda
,
B.
, and
Benson
,
B.
, 2004, “
Thermal Applications of Open-Cell Metal Foams
,”
Mater. Manuf. Processes
1042-6914,
19
(
5
), pp.
839
862
.
18.
Dul’nev
,
G. N.
, 1965, “
Heat Transfer through Solid Disperse Systems
,”
J. Eng. Phys.
0022-0841,
9
, pp.
275
278
.
19.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
, 1995, “
A Lumped-Parameter Model for Stagnant Thermal-Conductivity of Spatially Periodic Porous-Media
,”
ASME J. Heat Transfer
0022-1481,
117
(
2
), pp.
264
269
.
20.
Takegoshi
,
E.
,
Hirasawa
,
Y.
,
Matsuo
,
J.
, and
Okui
,
K.-I.
, 1992, “
A Study on Effective Thermal Conductivity of Porous Metals
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
58
(
547
), pp.
237
242
.
21.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
(
2
), pp.
453
464
.
22.
Singh
,
R.
, and
Kasana
,
H. S.
, 2004, “
Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams
,”
Appl. Therm. Eng.
1359-4311,
24
(
13
), pp.
1841
1849
.
23.
Doermann
,
D.
, and
Sacadura
,
J. F.
, 1996, “
Heat Transfer in Open Cell Foam Insulation
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
88
93
.
24.
Tao
,
W. H.
,
Hsu
,
H. C.
,
Chang
,
C. C.
,
Hsu
,
C. L.
, and
Lin
,
Y. S.
, 2001, “
Measurement and Prediction of Thermal Conductivity of Open Cell Rigid Polyurethane Foam
,”
J. Cell. Plast.
0021-955X,
37
(
4
), pp.
310
332
.
25.
Glicksman
,
L. R.
,
Torpey
,
M.
, and
Marge
,
A.
, 1992, “
Means to Improve the Thermal Conductivity of Foam Insulation
,”
J. Cell. Plast.
0021-955X,
28
(
6
), pp.
571
583
.
26.
Dharmasena
,
K.
, and
Wadley
,
H.
, 2002, “
Electrical Conductivity of Open-Cell Metal Foams
,”
J. Mater. Res.
0884-2914,
17
(
3
), pp.
625
631
.
27.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2004, “
Effective and Coupled Thermal Conductivities of Isotropic Open-Cellular Foams
,”
AIChE J.
0001-1541,
50
(
3
), pp.
547
556
.
28.
Weaire
,
D.
, and
Hutzler
,
S.
, 1999,
The Physics of Foam
,
Clarendon Press
,
Oxford
.
29.
Leyda
,
B.
, 2002–2004 (personal communication) (Chief Scientist at ERG Aerospace).
30.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
1359-6454,
46
(
10
), pp.
3619
3635
.
31.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams.
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
120
9
.
32.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
, 2004, “
Thermal Transport in High Porosity Cellular Metal Foams
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
3
), pp.
309
317
.
33.
Badalyan
,
A.
, and
Pendleton
,
P.
, 2003, “
Analysis of Uncertainties in Manometric Gas-Adsorption Measurements. I: Propagation of Uncertainties in Bet Analyses
,”
Langmuir
0743-7463,
19
(
19
), pp.
7919
7928
.
34.
Assael
,
M. J.
,
Gialou
,
K.
,
Kakosimos
,
K.
, and
Metaxa
,
I.
, 2004, “
Thermal Conductivity of Reference Solid Materials
,”
J. Thermophys. Heat Transfer
0887-8722,
25
(
2
), pp.
397
408
.
35.
ASME, 2003, Part II Materials: Subpart D Properties, in American Society of Mechanical Engineers: Boiler and Pressure Vessel Code.
36.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
You do not currently have access to this content.