In recent years, the Boltzmann transport equation (BTE) has begun to be used for predicting thermal transport in dielectrics and semiconductors at the submicron scale. However, most published studies make a gray assumption and do not account for either dispersion or polarization. In this study, we propose a model based on the BTE, accounting for transverse acoustic and longitudinal acoustic phonons as well as optical phonons. This model incorporates realistic phonon dispersion curves for silicon. The interactions among the different phonon branches and different phonon frequencies are considered, and the proposed model satisfies energy conservation. Frequency-dependent relaxation times, obtained from perturbation theory, and accounting for phonon interaction rules, are used. In the present study, the BTE is numerically solved using a structured finite volume approach. For a problem involving a film with two boundaries at different temperatures, the numerical results match the analogous exact solutions from radiative transport literature for various acoustic thicknesses. For the same problem, the transient thermal response in the acoustically thick limit matches results from the solution to the parabolic Fourier diffusion equation. In the acoustically thick limit, the bulk experimental value of thermal conductivity of silicon at different temperatures is recovered from the model. Experimental in-plane thermal conductivity data for silicon thin films over a wide range of temperatures are also matched satisfactorily.

1.
Flik
,
M. I.
,
Choi
,
B. I.
, and
Goodson
,
K. E.
,
1992
, “
Heat Transfer Regimes in Microstructures
,”
ASME J. Heat Transfer
,
114
, pp.
666
674
.
2.
Majumdar, A., 1998, “Microscale Energy Transport in Solids,” in Microscale Energy Transport, Tien, C.-L., Majumdar, A., and Gerner, F. M., eds., Taylor and Francis, Washington, D.C., pp. 1–94.
3.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
J. Heat Transfer
,
121
, pp.
945
953
.
4.
Chen
,
G.
,
2000
, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanopart. Res.
,
2
, pp.
199
204
.
5.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, pp.
7
16
.
6.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
7.
Ashcroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders, Philadelphia.
8.
Kittel, C., 1996, Introduction to Solid State Physics, Wiley, New York.
9.
Mahan
,
G. D.
, and
Claro
,
F.
,
1988
, “
Nonlocal Theory of Thermal Conductivity
,”
Phys. Rev. B
,
38
(
3
), pp.
1963
1969
.
10.
Claro
,
F.
, and
Mahan
,
G. D.
,
1989
, “
Transient Heat Transport in Solids
,”
J. Appl. Phys.
,
66
(
9
), pp.
4213
4217
.
11.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
, pp.
539
545
.
12.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
,
115
, pp.
835
841
.
13.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals—I. Analysis
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2789
2797
.
14.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39
.
15.
Goodson
,
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
, pp.
279
286
.
16.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
J. Heat Transfer
,
119
, pp.
220
229
.
17.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.
18.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
(
19
), pp.
2761
2763
.
19.
Cahill
,
D. G.
,
Goodson
,
K. E.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
, pp.
223
241
.
20.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
,
1998
, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
J. Heat Transfer
,
120
, pp.
30
36
.
21.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
,
2002
, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
,
91
(
8
), pp.
5079
5088
.
22.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Thin Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3305
3307
.
23.
Goodson
,
K. E.
, and
Ju
,
Y. S.
,
1999
, “
Heat Conduction in Novel Electronic Films
,”
Annu. Rev. Mater. Sci.
,
29
, pp.
261
293
.
24.
Ju, Y. S., 1999, “Microscale Heat Conduction in Integrated Circuits and Their Constituent Films,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University.
25.
Sverdrup, P. G., 2000, “Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University.
26.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
2001
, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
123
, pp.
130
137
.
27.
Armstrong
,
B. H.
,
1981
, “
Two-Fluid Theory of Thermal Conductivity of Dielectric Crystals
,”
Phys. Rev. B
,
23
(
2
), pp.
883
899
.
28.
Armstrong
,
B. H.
,
1985
, “
N Processes, the Relaxation-Time Approximation, and Lattice Thermal Conductivity
,”
Phys. Rev. B
,
32
(
6
), pp.
3381
3390
.
29.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2003
, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
896
903
.
30.
Duncan
,
A.
,
Ravaioli
,
U.
, and
Jakumeit
,
J.
,
1998
, “
Full-Band Monte Carlo Investigation of Carrier Trends in the Scaling of Metal-Oxide Semiconductor Field-Effect Transistors
,”
IEEE Trans. Electron Devices
,
45
, pp.
867
876
.
31.
Pop, E., Banerjee, K., Sverdrup, P. G., Dutton, R., and Goodson, K. E., “Localized Heating Effects and Scaling of Sub-0.18 Micron CMOS Devices,” IEEE Intern. Electron Devices Meeting (IEDM), Dec. 2001, Washington D.C. pp.
1
31
32.
Pop, E., Sinha, S., and Goodson, K. E., 2003, “Detailed Phonon Generation Simulations Via the Monte Carlo Method,” Proceedings—ASME Summer Heat Transfer Conference, Las Vegas, NV, Paper No. HT2003-47312.
33.
Majumdar
,
A.
,
Fushinobu
,
K.
, and
Hijikata
,
K.
,
1995
, “
Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor
,”
J. Appl. Phys.
,
77
(
12
), pp.
6686
6694
.
34.
Fushinobu, K., Hijikata, K., and Majumdar, A., 1995, “Heat Generation in Sub-Micron GaAs MESFETs,” Proceedings—International Intersociety Electronic Packaging Conference EEP-Vol. 10-2, Advances in Electronic Packaging, pp. 897–902.
35.
Fushinobu
,
K.
,
Majumdar
,
A.
, and
Hijikata
,
K.
,
1995
, “
Heat Generation and Transport in Submicron Semiconductor Devices
,”
ASME J. Heat Transfer
,
117
, pp.
25
31
.
36.
Lai
,
J.
, and
Majumdar
,
A.
,
1996
, “
Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices
,”
J. Appl. Phys.
,
79
(
9
), pp.
7353
7361
.
37.
Blotekjaer
,
K.
,
1970
, “
Transport Equations for Electrons in Two-Valley Semiconductors
,”
IEEE Trans. Electron Devices
,
ED-17
(
1
), pp.
38
47
.
38.
Balandin
,
A.
, and
Wang
,
K. L.
,
1998
, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
(
3
), pp.
1544
1549
.
39.
Zou
,
J.
, and
Balandin
,
A.
,
2001
, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
,
89
(
5
), pp.
2932
2938
.
40.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
, pp.
749
759
.
41.
Ecsedy
,
D. J.
, and
Klemens
,
P. G.
,
1977
, “
Thermal Resistivity of Dielectric Crystals Due to Four-Phonon Processes and Optical Modes
,”
Phys. Rev. B
,
15
(
12
), pp.
5957
5962
.
42.
Klemens, P. G., 1958, “Thermal Conductivity and Lattice Vibrational Modes,” in Solid State Physics, Seitz, F. and Thurnbull, D., eds., Academic Press, New York, pp. 1–98.
43.
Klemens, P. G., 1969, “Theory of Thermal Conductivity of Solids,” in Thermal Conductivity, Tye, R. P., ed., Academic Press, London, pp. 1–68.
44.
Han
,
Y.-J.
, and
Klemens
,
P. G.
,
1993
, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
,
48
, pp.
6033
6042
.
45.
Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2003, “Simulations of Heat Conduction in Sub-Micron Silicon-on-Insulator Transistors Accounting for Phonon Dispersion and Polarization,” ASME International Mechanical Engineering Congress and Exposition, Washington, DC, Paper No. IMECE2003-42447.
46.
Narumanchi, S. V. J., 2003, “Heat Transport in Sub-Micron Conduction,” Ph.D. thesis, Department of Mechanical Engineering, Carnegie Mellon University.
47.
Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2004, “Heat Transport During Transient Electrostatic Discharge Events in a Sub-Micron Transistor,” Proceedings—ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, Paper No. HT-FED2004-56252.
48.
Brockhouse
,
B. N.
,
1959
, “
Lattice Vibrations in Silicon and Germanium
,”
Phys. Rev. Lett.
,
2
(
6
), pp.
256
259
.
49.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.
50.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
51.
Touloukian, Y. S., and Buyco, E. H., 1970, “Specific Heat: Nonmetallic Solids,” in Thermophysical Properties of Matter, IFI/Plenum, New York.
52.
Klemens
,
P. G.
,
1951
, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures
,”
Proc. R. Soc. London, Ser. A
,
208
(
1092
), pp.
108
133
.
53.
Klemens
,
P. G.
,
1955
, “
The Scattering of Low Frequency Lattice Waves by Lattice Imperfections
,”
Proc. Phys. Soc., London, Sect. A
,
68
, pp.
1113
1128
.
54.
Tamura
,
S.
,
1983
, “
Isotope Scattering of Dispersive Phonons in Ge
,”
Phys. Rev. B
,
27
, pp.
858
866
.
55.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, London.
56.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
419
425
.
57.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
1998
, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
313
321
.
58.
Gaskell
,
P. H.
, and
Lau
,
A. K. C.
,
1988
, “
Curvature-Compensated Convective Transport: Smart, a New Boundedness-Preserving Transport Algorithm
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
617
641
.
59.
Darwish
,
M. S.
, and
Moukalled
,
F. H.
,
1994
, “
Normalized Variable and Space Formulation Methodology for High-Resolution Schemes
,”
Numer. Heat Transfer, Part B
,
26
, pp.
79
96
.
You do not currently have access to this content.