Radiative properties have been studied for one-dimensional dielectric multilayer structures subjected to blackbody radiation sources. The total hemispherical transmittances are calculated for periodic structures and structures with random variation in layer thickness, using wave-optics and ray-tracing methods. Simulation results show that for periodic structures, the transmittance calculated using wave optics approaches a nonzero constant value with an increasing number of layers, while the transmittance obtained using the ray-tracing method asymptotically approaches zero. For random structures, the transmittance given by wave optics drops to zero at different rates depending on the order of random variations in layer thickness. It is found that the wave interference effect always plays a role when dealing with multilayer structures. The results are explained based on extended and localized waves.

1.
Born, M., and Wolf, E., 1989, Principles of Optics, Sixth Corrected ed., Pergamon, Oxford.
2.
Chen
,
G.
, and
Tien
,
C. L.
,
1992
, “
Partial Coherence Theory of Thin Film Radiative Properties
,”
ASME J. Heat Transfer
,
114
, pp.
636
643
.
3.
Richter
,
K.
,
Chen
,
G.
, and
Tien
,
C. L.
,
1993
, “
Partial Coherence Theory of Multilayer Thin-Film Optical Properties
,”
Opt. Eng. (Bellinghan)
,
32
, pp.
1897
1903
.
4.
Zhang, Z. M., 1994, “Optical Properties of Layered Structures for Partially Coherent Radiation,” Heat Transfer 1994—Proc. of 10th International Heat Transfer Conference, Brighton, UK, G. F. Hewitt, ed., Institute of Chemical Engineers, Rugby, Warwickshire, UK, 2, pp. 177–182.
5.
Wong
,
P. Y.
,
Hess
,
C. K.
, and
Miaoulis
,
I. N.
,
1992
, “
Thermal Radiation Modeling in Multilayer Thin Film Structures
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3313
3321
.
6.
Mehta
,
C. L.
, and
Wolf
,
E.
,
1964
, “
Coherence Properties of Blackbody Radiation I: Correlation Tensors of the Classic Field
,”
Phys. Rev.
,
134
(
5A
), pp.
A1143–A1149
A1143–A1149
.
7.
Mehta
,
C. L.
, and
Wolf
,
E.
,
1964
, “
Coherence Properties of Blackbody Radiation II: Correlation Tensors of the Quantized Field
,”
Phys. Rev.
,
134
(
5A
), pp.
A1149–A1153
A1149–A1153
.
8.
Mehta
,
C. L.
, and
Wolf
,
E.
,
1967
, “
Coherence Properties of Blackbody Radiation, III: Cross-Spectral Tensors
,”
Phys. Rev.
,
161
(
5
), pp.
1328
1334
.
9.
Kano
,
Y.
, and
Wolf
,
E.
,
1962
, “
Temporal Coherence of Blackbody Radiation
,”
Proc. Phys. Soc. London
,
80
, pp.
1273
1276
.
10.
Mehta
,
C. L.
,
1963
, “
Coherence-Time and Effective Bandwidth of Blackbody Radiation
,”
Nuovo Cimento
,
XXVIII
(
2
), pp.
401
408
.
11.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
ASME J. Heat Transfer
,
121
, pp.
945
953
.
12.
Anderson
,
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev. Lett.
,
109
(
5
), pp.
1492
1505
.
13.
Kotulski, Z., 1993, “Wave Propagation in Randomly Stratified Media and Anderson Localization,” Proc. of Euromech Colloquim: Chaos and Noise in Dynamical Systems, Spala, Poland, T. Kapitaniak, and J. Brindley, eds., World Scientific Publishing, River Edge, NJ, 308, pp. 138–146.
14.
John, S., 1990, “The Localization of Waves in Disordered Media,” Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed., World Scientific, Singapore.
15.
Albada, M. P., Mark, M. P, and Lagendijk, A., 1990, “Experiments on Weak Localization of Light and Their Interpretation,” Scattering and Localization of Classical Waves in Random Media, P. Sheng, (ed.), World Scientific, Singapore.
16.
Sheng, P., 1995, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic Press, New York.
17.
Sheng
,
P.
,
White
,
B.
,
Zhang
,
Z. Q.
, and
Papanicolaou
,
G.
,
1986
, “
Minimum Wave-Localization Length in a One-Dimensional Random Medium
,”
Phys. Rev. B
,
34
(
7
), pp.
4757
4761
.
18.
Gredeskul
,
S. A.
, and
Freilikher
,
V. D.
,
1990
, “
Localization and Wave Propagation in Randomly Layered Media
,”
Sov. Phys. Usp.
,
33
(
2
), pp.
134
146
.
19.
Figotin
,
A.
, and
Klein
,
A.
,
1998
, “
Localization of Light in Lossless Inhomogeneous Dielectrics
,”
J. Opt. Soc. Am. A
,
15
(
5
), pp.
1423
1435
.
20.
Chubb
,
D. L.
, and
Lowe
,
R. A.
,
1993
, “
Thin-Film Selective Emitter
,”
J. Appl. Phys.
,
74
(
9
), pp.
5687
5698
.
21.
Sakoda
,
K.
,
Sasada
,
M.
,
Fukushima
,
T.
,
Yamanaka
,
A.
,
Kawai
,
N.
, and
Inoue
,
K.
,
1999
, “
Detailed Analysis of Transmission Spectra and Bragg-Reflection Spectra of a Two-Dimensional Photonic Crystal with a Lattice Constant of 1.15 μm
,”
J. Opt. Soc. Am. B
,
16
(
3
), pp.
361
365
.
22.
Fleming
,
J. G.
,
Lin
,
S. Y.
,
El-Kady
,
I.
,
Biswas
,
R.
, and
Ho
,
K. M.
,
2002
, “
All-Metallic Three-Dimensional Photonic Crystals with a Large Infrared Bandgap
,”
Nature (London)
,
417
, pp.
52
55
.
23.
Siegel, R., and Howell, J., 1992, Thermal Radiation Heat Transfer, Third Edition, Hemisphere, Washington, p. 928.
24.
Ziegler
,
K.
,
2003
, “
Localization of Electromagnetic Waves in Random Media
,”
J. Quant. Spectrosc. Radiat. Transf.
,
79–80
, pp.
1189
1198
.
25.
Siglas
,
M. M.
,
Soukoulis
,
C. M.
,
Chan
,
C.-T.
, and
Turner
,
D.
,
1996
, “
Localization of Electromagnetic Waves in Two-Dimensional Disordered Systems
,”
Phys. Rev. B
,
53
(
13
), pp.
8340
8348
.
26.
Evans
,
G. A.
, and
Webster
,
J. R.
,
1999
, “
A Comparison of Some Methods for the Evaluation of Highly Oscillatory Integrals
,”
J. Comput. Appl. Math.
,
112
, pp.
55
69
.
27.
Hoffman, J. D., 1992, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York.
28.
Escande
,
D. F.
, and
Souillard
,
B.
,
1984
, “
Localization of Waves in a Fluctuating Plasma
,”
Phys. Rev. Lett.
,
52
(
15
), pp.
1296
1299
.
29.
Garcia-Martin
,
A.
, and
Sa´enz
,
J. J.
,
2000
, “
Spatial Field Distributions in the Transition from Ballistic to Diffusive Transport in Randomly Corrugated Waveguides
,”
Phys. Rev. Lett.
,
84
(
16
), pp.
3578
3581
.
30.
Froufe-Pe´rez
,
L. S.
,
Garcı´a-Mochales
,
P.
,
Serena
,
P. A.
,
Mello
,
P. A.
, and
Sa´enz
,
J. J.
,
2002
, “
Conductance Distributions in Quasi-One-Dimensional Disordered Wires
,”
Phys. Rev. Lett.
,
89
(
24
), pp.
246403
246403
(1–4).
You do not currently have access to this content.