Using delta wings placed at the leading edge of a flat plate, streamwise vortices are generated that modify the flow; the same wings are also used to modify a developing channel flow. Local and average measurements of convection coefficients are obtained using naphthalene sublimation, and the structure of the vortices is studied using flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement of the channel flow is also investigated. In regions where a vortex induces a surface-normal inflow, the local heat transfer coefficients are found to increase by as much as 300 percent over the baseline flow, depending on vortex strength and location relative to the boundary layer. Vortex strength increases with Reynolds number, wing aspect ratio, and wing attack angle, and the vortex strength decays as the vortex is carried downstream. Considering the complete channel surface, the largest spatially averaged heat average heat transfer enhancement is 55 percent; it is accompanied by a 100 percent increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator.

1.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1998
, “
Air-Side Flow and Heat Transfer in Compact Heat Exchangers: A Discussion of Enhancement Mechanisms
,”
Heat Transfer Eng.
,
19
, pp.
29
41
.
2.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
, pp.
295
309
.
3.
Fiebig
,
M.
,
1995
, “
Vortex Generators for Compact Heat Exchangers
,”
J. Enhanced Heat Transfer
,
2
, pp.
43
61
.
4.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
A2
), pp.
108
123
.
5.
Turk, A. Y., and Junkhan, G. H., 1986, “Heat Transfer Enhancement Downstream of Vortex Generators on a Flat Plate,” Heat Transfer 1986, Proceedings of the Eighth International Heat Transfer Conference, San Francisco, California, August 17–22, 6, Hemisphere Publishing Corp., pp. 2903–2908.
6.
Torii, K., Yanagihara, J. I., and Nagai, Y., 1991, “Heat Transfer Enhancement by Vortex Generators,” Proceedings of the ASME/JSME Thermal Engineering Joint Conference, J. R. Lloyd, and Y. Kurosaki, eds., ASME Book No. I0309C, ASME, New York, pp. 77–83.
7.
Yanagihara, J. I., and Torii, K., 1993, “Heat Transfer Augmentation by Longitudinal Vortices Rows,” Proceedings of the Third World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, M. D. Kelleher et al., eds., 1, pp. 560–567.
8.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
1997
, “
Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions with the Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
14
, pp.
231
242
.
9.
Eibeck
,
P. A.
, and
Eaton
,
J. K.
,
1987
, “
Heat Transfer Effects of a Longitudinal Vortex Embedded in a Turbulent Boundary Layer
,”
ASME J. Heat Transfer
,
109
, pp.
16
24
.
10.
Pauley
,
W. R.
, and
Eaton
,
J. K.
,
1988
, “
Experimental Study of the Development of Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer
,”
AIAA J.
,
26
, pp.
816
823
.
11.
Fiebig, M., Kallweit, P., and Mitra, N. K., 1986, “Wing Type Vortex Generators for Heat Transfer Enhancement,” Heat Transfer 1986, Proceedings of the Eighth International Heat Transfer Conference, San Francisco, California, August 17–22, 5, Hemisphere Publishing Corp., pp. 2909–2913.
12.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N. K.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
, pp.
103
113
.
13.
Brockmeier
,
U.
,
Fiebig
,
M.
,
Guntermann
,
T.
, and
Mitra
,
N. K.
,
1989
, “
Heat Transfer Enhancement in Fin-Plate Heat Exchangers by Wing-Type Vortex Generators
,”
Chem. Eng. Technol.
,
12
, pp.
288
294
.
14.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transf.
,
39
, pp.
3441
3451
.
15.
Gentry, M. C., and Jacobi, A. M., 1998, Heat Transfer Enhancement Using Tip and Junction Vortices, ACRC TR-137, University of Illinois, Urbana, IL.
16.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using the Naphthalene Sublimation Technique
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
416
434
.
17.
Souza Mendes
,
P. R.
,
1991
, “
The Naphthalene Sublimation Technique
,”
Exp. Therm. Fluid Sci.
,
4
, pp.
510
523
.
18.
Kearney, S. P., and Jacobi, A. M., 1995, Local and Average Heat Transfer and Pressure Drop Characteristics of Annularly Finned Tube Heat Exchangers, ACRC TR-69, University of Illinois, Urbana, IL.
19.
Ogawa, A., 1993, Vortex Flow, CRC Press, Boca Raton, FL.
20.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.
21.
Bejan, A., 1995, Convection Heat Transfer, John Wiley & Sons, New York, NY.
22.
Panton, R. L., 1996, Incompressible Flow, 2nd ed., John Wiley and Sons, New York, NY.
23.
Peace
,
A. J.
, and
Riley
,
N.
,
1983
, “
A Viscous Vortex pair in Ground Effect
,”
J. Fluid Mech.
,
129
, pp.
409
426
.
24.
Pohlhamus, E. C., 1966, “A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading Edge Suction Analogy,” TN D-3767, NASA.
25.
ElSherbini, A., and Jacobi, A. M., 2002, “The Thermal Hydraulic Impact of Delta-Wing Vortex Generators on the Performance of a Plain-Fin-and-Tube Heat Exchanger,” International Journal of HVAC&R Research, (in press).
You do not currently have access to this content.