For vertical Bridgman growth of thermally anisotropic semiconductors, we present a detailed model accounting for heat transfer, flow driven by thermal buoyancy and solidification shrinkage, and interface deformation. The model allows for anisotropic solid-phase thermal conductivity, characteristic of nonlinear optical materials, as well as conduction in the ampoule wall, and conduction and convection in the liquid. The interface shape is determined as part of the solution of a moving boundary problem. For the nonlinear optical material gallium selenide and a range of growth conditions of practical interest, we present steady axisymmetric computations of the isotherms, flow, and interface shape. For ampoule-wall temperature profiles typical of three-zone Bridgman furnaces, the strength of the flow and deflection of the interface increase considerably with increasing growth rate, while the temperature distribution is relatively insensitive, except near the interface. Interface deflection decreases as the maximum ampoule-wall temperature gradient increases. The flow depends significantly on whether the melting temperature is “centered” between the high and low temperatures. The 23°C uncertainty in the melting temperature of GaSe is shown to have little effect on the flow and interface shape over the entire range of growth conditions. We show that properly accounting for thermal anisotropy is critical to predicting the flow and interface shape, both of which are relatively insensitive to the temperature dependence of the viscosity and thermal conductivities. We also show that localized heating along the ampoule wall can both reverse the direction of flow along the interface, which is expected to significantly influence distribution of dopants or impurities in the solid phase, as well as reduce interfacial curvature. When GaSe is grown under zero gravity conditions, the only flow is due to solidification shrinkage, and is essentially normal to the interface, whose shape is similar to those computed at normal gravity. Comparison of results for GaSe to previous work for benzene, a surrogate for organic nonlinear optical materials, shows that the qualitatively different results are associated with differences in the anisotropy of the thermal conductivity.

1.
Feigelson
,
R. S.
, and
Route
,
R. K.
,
1990
, “
Improved Yield of Bridgman Grown AgGaSe2 Crystals using Shaped Crucibles
,”
J. Cryst. Growth
,
104
, pp.
789
792
.
2.
Feigelson
,
R. S.
, and
Route
,
R. K.
,
1980
, “
Vertical Bridgman Growth of CdGeAs2 with Control of Interface Shape and Orientation
,”
J. Cryst. Growth
,
49
, pp.
261
273
.
3.
Prazak
,
M.
, and
Holecek
,
S.
,
1995
, “
Directional Solidification of AlZn Eutectic in Microgravity Conditions
,”
Cryst. Res. Technol.
,
30
, pp.
927
932
.
4.
McGhie
,
A. R.
, and
Sloan
,
G. J.
,
1976
, “
Impurity Distribution in Organic Crystals I. The System Naphthalene/2-Chloronaphthalene
,”
J. Cryst. Growth
,
32
, pp.
60
67
.
5.
Lee
,
H.
, and
Pearlstein
,
A. J.
,
2000
, “
Simulation of Vertical Bridgman Growth of Benzene, a Material with Anisotropic Solid-Phase Thermal Conductivity
,”
J. Cryst. Growth
,
209
, pp.
934
952
.
6.
Gau
,
C.
, and
Viskanta
,
R.
,
1985
, “
Effect of Crystal Anisotropy on Heat Transfer During Melting and Solidification of a Metal
,”
ASME J. Heat Transfer
,
107
, pp.
706
708
.
7.
Weaver
,
J. A.
, and
Viskanta
,
R.
,
1989
, “
Effects of Anisotropic Heat Conduction on Solidification
,”
Numer. Heat Transfer
,
15A
, pp.
181
195
.
8.
Huang
,
C. E.
,
Ewell
,
D.
, and
Feigelson
,
R. S.
,
1983
, “
Influence of Thermal Conductivity on Interface Shape During Bridgman Growth
,”
J. Cryst. Growth
,
64
, pp.
441
447
.
9.
Lee
,
H.
, and
Pearlstein
,
A. J.
,
2000
, “
Simulation of Radial Dopant Segregation in Vertical Bridgman Growth of Pyridine-Doped Benzene, a Surrogate for Binary Organic Nonlinear Optical Materials
,”
J. Cryst. Growth
,
218
,
354
352
.
10.
Kasriel, R. H., 1971, Undergraduate Topology, W. B. Saunders, Philadelphia, PA, p. 116.
11.
Fernelius, N. C., Singh, N. B., Suhre, D. R., and Balakrishna, V., 1999, “Modified Gallium Selenide Crystals for High Power Nonlinear Optical Applications,” U.S. Patent 5,980,789, issued Nov. 9, 1999.
12.
Fernelius
,
N. C.
,
Hopkins
,
F. K.
, and
Ohmer
,
M. C.
1999
, “
Nonlinear Optical Crystal Development for Laser Wavelength Shifting at AFRL Materials Directorate
,” in Operational Characteristics and Crystal Growth of Nonlinear Optical Materials,
Proc. SPIE
,
3793
, SPIE, Bellingham, Wash. pp.
2
8
.
13.
Lieth, R. M. A., 1977, “III-VI Compounds,” in Preparation and Crystal Growth of Materials with Layered Structures, R. M. A. Lieth, ed., Reidel, Dordrecht, pp. 225–254.
14.
Gouskov
,
A.
,
Camassel
,
J.
, and
Gouskov
,
L.
,
1982
, “
Growth and Characterization of III-VI Layered Crystals like GaSe, GaTe, InSe, GaSe1−xTex and GaxIn1−xSe
,”
Prog. Cryst. Growth Charact.
,
5
, pp.
323
413
.
15.
Maschke, K., and Le´vy, F., 1983, “III-VI Compounds,” in Numerical Data and Functional Relationships in Science and Technology, Landolt-Bo¨rnstein, New Series, Group III, 17f, O. Madelung, ed., Springer-Verlag, Berlin, pp. 9–102.
16.
Fernelius
,
N. C.
,
1994
, “
Properties of Gallium Selenide Single Crystal
,”
Prog. Cryst. Growth Charact. Mater.
,
28
, pp.
275
353
.
17.
Holmes
,
D. E.
, and
Gatos
,
H. C.
,
1981
, “
Convective Interference and ‘Effective’ Diffusion-Controlled Segregation during Directional Solidification under Stabilizing Vertical Temperature Gradients; Ge
,”
J. Electrochem. Soc.
,
128
, pp.
429
437
.
18.
Chang
,
C. J.
, and
Brown
,
R. A.
,
1983
, “
Radial Segregation Induced by Natural Convection and Melt/Solid Interface Shape in Vertical Bridgman Growth
,”
J. Cryst. Growth
,
63
, pp.
343
364
.
19.
Adornato
,
P. M.
, and
Brown
,
R. A.
,
1987
, “
Convection and Segregation in Directional Solidification of Dilute and Non-dilute Binary Alloys: Effects of Ampoule and Furnace Design
,”
J. Cryst. Growth
,
80
, pp.
155
190
.
20.
Adornato
,
P. M.
, and
Brown
,
R. A.
,
1987
, “
Petrov-Galerkin Methods for Natural Convection in Directional Solidification of Binary Alloys
,”
Int. J. Numer. Methods Fluids
,
7
, pp.
761
791
.
21.
Kim
,
D. H.
, and
Brown
,
R. A.
,
1989
, “
Models for Convection and Segregation in the Growth of HgCdTe by the Vertical Bridgman Method
,”
J. Cryst. Growth
,
96
, pp.
609
627
.
22.
Kim
,
D. H.
, and
Brown
,
R. A.
,
1991
, “
Modelling of the Dynamics of HgCdTe Growth by the Vertical Bridgman Method
,”
J. Cryst. Growth
,
114
, pp.
411
434
.
23.
Kuppurao
,
S.
,
Brandon
,
S.
, and
Derby
,
J. J.
,
1995
, “
Modeling the Vertical Bridgman Growth of Cadmium Zinc Telluride: I. Quasi-Steady Analysis of Heat Transfer and Convection
,”
J. Cryst. Growth
,
155
,
93
102
.
24.
Liang
,
M. C.
, and
Lan
,
C.
,
1996
, “
Three-Dimensional Convection and Solute Segregation in Vertical Bridgman Crystal Growth
,”
J. Cryst. Growth
,
167
, pp.
320
332
.
25.
Lan
,
C. W.
, and
Chen
,
F. C.
,
1996
, “
A Finite Volume Method for Solute Segregation in Directional Solidification and Comparison with a Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
131
, pp.
191
207
.
26.
Lan
,
C. W.
,
1999
, “
Effects of Ampoule Rotation on Flows and Dopant Segregation in Vertical Bridgman Growth
,”
J. Cryst. Growth
,
197
, pp.
983
991
.
27.
Ma
,
N.
, and
Walker
,
J. S.
,
2000
, “
A Model of Dopant Transport During Bridgman Crystal Growth with Magnetically Damped Buoyant Convection
,”
ASME J. Heat Transfer
,
122
, pp.
159
164
.
28.
Jandl
,
S.
,
Brebner
,
J. L.
, and
Powell
,
B. M.
,
1976
, “
Lattice Dynamics of GaSe
,”
Phys. Rev. B
,
13
, pp.
686
693
.
29.
Bastow
,
T. J.
,
Campbell
,
I. D.
, and
Whitfield
,
H. J.
,
1981
, “
A 69Ga, 115In NQR Study of Polytopes of GaS, GaSe and InGe
,”
Solid State Commun.
,
39
, pp.
307
311
.
30.
Cox
,
E. G.
,
Cruickshank
,
D. W. J.
, and
Smith
,
J. A. S.
,
1958
, “
The Crystal Structure of Benzene at −3°C
,”
Proc. R. Soc. London, Ser. A
,
247
, pp.
1
21
.
31.
Guseinov
,
G. D.
,
Abdullayeva
,
S. G.
,
Ramazanzade
,
A. M.
,
Ismailov
,
M. Z.
,
Viscakas
,
J. K.
,
Vaitkus
,
J. J.
, and
Baltramieju¯nas
,
R. A.
,
1975
, “
Anisotropy of Lattice Heat Conductivity of Complex Chalcogenides
,”
Phys. Lett.
,
54A
, pp.
378
380
.
32.
Tiller, W. A., 1963, “Principles of Solidification,” The Art and Science of Growing Crystals, J. J. Gilman, ed., Wiley, New York, pp. 276–342.
33.
Huang
,
C. E.
,
Elwell
,
D.
, and
Feigelson
,
R. S.
,
1984
, “
Computation of Stress in Bridgman Crystals
,”
J. Cryst. Growth
,
69
, pp.
275
280
.
34.
Abdullaev
,
G. B.
,
Abasova
,
A. Z.
,
Zaitov
,
F. A.
,
Lepnev
,
L. S.
,
Stafeev
,
V. I.
, and
Chkunina
,
V. N.
,
1982
, “
Influence of Gamma and Neutron Irradiation on the Photoluminescence Spectra of p-type GaSe Single Crystals
,”
Sov. Phys. Semicond.
,
16
, pp.
729
729
.
35.
Shigetomi
,
S.
,
Ikari
,
T.
, and
Nakashima
,
H.
,
1993
, “
Optical and Electrical Properties of Layer Semiconductor p-GaSe Doped with Zn
,”
J. Appl. Phys.
,
74
, pp.
4125
4129
.
36.
Lee
,
W.-S.
,
Kim
,
N.-O.
, and
Kim
,
B.-I.
,
1996
, “
Optical Properties of GaSe:Er3+ Single Crystals
,”
J. Mater. Sci. Lett.
,
15
, pp.
1644
1645
.
37.
Singh
,
N. B.
,
Suhre
,
D. R.
,
Rosch
,
W.
,
Meyer
,
R.
,
Marable
,
M.
,
Fernelius
,
N. C.
,
Hopkins
,
F. K.
,
Zelmon
,
D. E.
, and
Narayanan
,
R.
,
1999
, “
Modified GaSe Crystals for Mid-IR Applications
,”
J. Cryst. Growth
,
198/199
, pp.
588
592
.
38.
Micocci
,
G.
,
Serra
,
A.
, and
Tepore
,
A.
,
1997
, “
Electrical Properties of n-GaSe Single Crystals Doped with Chlorine
,”
J. Appl. Phys.
,
82
, pp.
2365
2369
.
39.
Singh
,
N. B.
,
Narayanan
,
R.
,
Zhao
,
A. X.
,
Balakrishna
,
V.
,
Hopkins
,
R. H.
,
Suhre
,
D. R.
,
Fernelius
,
N. C.
,
Hopkins
,
F. K.
, and
Zelmon
,
D. E.
,
1997
, “
Bridgman Growth of GaSe Crystals for Nonlinear Optical Applications
,”
Mater. Sci. Eng., B
,
49
, pp.
243
246
.
40.
Singh
,
N. B.
,
Suhre
,
D. R.
,
Balakrishna
,
V.
,
Marable
,
M.
,
Meyer
,
R.
,
Fernelius
,
N.
,
Hopkins
,
F. K.
, and
Zelmon
,
D.
,
1998
, “
Far-Infrared Conversion Materials: Gallium Selenide for Far-Infrared Conversion Applications
,”
Prog. Cryst. Growth Charact. Mater.
,
37
, pp.
47
102
.
41.
Anis
,
M. K.
,
1981
, “
The Growth of Single Crystals of GaSe
,”
J. Cryst. Growth
,
55
, pp.
465
469
.
42.
Anis
,
M. K.
,
1988
, “
Thermopower Measurements in p-GaSe Single Crystals Parallel and Perpendicular to the c-Axis
,”
Int. J. Electron.
,
65
, pp.
215
221
.
43.
Segura
,
A.
,
Guesdon
,
J. P.
,
Besson
,
J. M.
, and
Chevy
,
A.
,
1979
, “
Photovoltaic Effect in InSe. Application to Solar Energy Conversion
,”
Rev. Phys. Appl.
,
14
, pp.
253
257
.
44.
Parfeniuk
,
C.
,
Weinberg
,
F.
,
Samarasekera
,
I. V.
,
Schvezov
,
C.
, and
Li
,
L.
,
1992
, “
Measured Critical Resolved Shear Stress and Calculated Temperature and Stress Fields during Growth of CdZnTe
,”
J. Cryst. Growth
,
119
, pp.
261
270
.
45.
Brice, J. C., 1973, The Growth of Crystals from Liquids, North-Holland, Amsterdam, p. 209.
46.
Cardetta
,
V. L.
,
Mancini
,
A. M.
, and
Rizzo
,
A.
,
1972
, “
Melt Growth of Single Crystal Ingots of GaSe by Bridgman-Stockbarger’s Method
,”
J. Cryst. Growth
,
16
, pp.
183
185
.
47.
Sampaio
,
H.
,
Gouskov
,
A.
, and
Arguello
,
Z. P.
,
1977
, “
Orientations of the Basal Plane of Single Crystals of GaSe Grown by Vertical Bridgman Technique
,”
J. Cryst. Growth
,
41
, pp.
275
277
.
48.
Shtanov
,
V. I.
,
Komov
,
A. A.
,
Tamm
,
M. E.
,
Atrashenko
,
D. V.
, and
Zlomanov
,
V. P.
,
1998
, “
Phase Diagram of the Gallium-Selenium System and Photoluminescence Spectra of GaSe Crystals
,”
Dokl. Chem.
,
361
, pp.
140
143
.
49.
Gouskov
,
L.
,
Gouskov
,
A.
,
Lemos
,
V.
,
May
,
W.
, and
Sampaio
,
H.
,
1977
, “
Electrical Properties of GaTexSe1−x Crystals
,”
Phys. Status Solidi A
,
39
, pp.
65
71
.
50.
Sulewski
,
P. E.
,
Bucher
,
E.
,
Stu¨cheli
,
N.
,
Oglesby
,
C. S.
,
Friemelt
,
K.
,
Vo¨gt
,
M.
,
Baumann
,
J. R.
, and
Kloc
,
C.
,
1992
, “
Search for Giant Franz-Keldysh-Like Effects in GaSe and Other Layered Semiconductors
,”
Appl. Phys. A
,
54
, pp.
79
83
.
51.
Sakai
,
E.
,
Nakatani
,
H.
,
Tatsuyama
,
C.
, and
Takeda
,
F.
,
1998
, “
Average Energy Needed to Produce an Electron-Hole Pair in GaSe Nuclear Particle Detectors
,”
IEEE Trans. Nucl. Sci.
,
35
, pp.
85
88
.
52.
Pfeiffer
,
M.
, and
Mu¨lhberg
,
M.
,
1992
, “
Interface Shape Observation and Calculation in Crystal Growth of CdTe by the Vertical Bridgman Method
,”
J. Cryst. Growth
,
118
, pp.
269
276
.
53.
Lan
,
C. W.
, and
Ting
,
C. C.
,
1996
, “
A Study of the Interface Control of Vertical Bridgman Crystal Growth using a Transparent Multizone Furnace
,”
Chem. Eng. Commun.
,
145
, pp.
131
143
.
54.
Zhang
,
H.
,
Zheng
,
L. L.
,
Prasad
,
V.
, and
Larson
,
D. J.
,
1998
, “
Local and Global Simulations of Bridgman and Liquid-Encapsulated Czochralski Crystal Growth
,”
ASME J. Heat Transfer
,
120
, pp.
865
873
.
55.
Anis
,
M. K.
, and
Piercy
,
A. R.
,
1977
, “
Growth of Single Crystals of GaSe with Natural Facets at Large Angles to the Layers
,”
Phys. Status Solidi A
,
44
, pp.
K5–K6
K5–K6
.
56.
Glazov, V. M., Makhmudov, S., and Mavlonov, S., 1972, “Thermal Expansion and Volume Changes During the Melting of Gallium and Indium Selenides” (translated), Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk, No. 1, pp. 20–24.
57.
Suzuki
,
H.
, and
Mori
,
R.
,
1974
, “
Phase Study on Binary System Ga-Se
,”
Jpn. J. Appl. Phys.
,
13
, pp.
417
423
.
58.
Dieleman
,
J.
,
Sanders
,
F. H. M.
, and
van Dommelen
,
J. H. J.
,
1982
, “
The Phase Diagram of the Ga-Se System
,”
Philips J. Res.
,
37
, pp.
204
229
.
59.
Dieleman
,
J.
, and
Engelfriet
,
R. G.
,
1971
, “
The Phase Diagram of the System Ga1−xSex for 0.5⩽x⩽0.6 and 300 K⩽T⩽1500 K
,”
J. Less-Common Met.
,
25
, pp.
231
233
.
60.
Zavrazhnov
,
A. Y.
,
Turchen
,
D. N.
,
Goncharov
,
E. G.
, and
Prigorodova
,
T. A.
,
1999
, “
Scanning of T-X Projections of Phase Microdiagrams based on Data on Gas Solubility in Melts. Homogeneity Area of GaSe at Premelting Temperatures
,”
Russ. J. Gen. Chem.
,
69
, pp.
1692
1697
.
61.
Fedorov
,
V. I.
, and
Machuev
,
V. I.
,
1972
, “
Thermal Conductivity of Selenium and of Indium and Gallium Selenides in the Liquid and Solid States
,”
Sov. Phys. Semicond.
,
6
, pp.
142
144
.
62.
Glazov, V. M., Makhmudov, S., and Mavlonov, S., 1978, “Temperature Dependence of the Viscosity of Gallium and Indium Selenides” (translated), Elektricheskie Svoistva Slozhnykh Poluprovodnikov i Kristallov, S. M. Mavlonov and R. A. Karieva, eds., Donish, Dushanbe, pp. 28–41.
63.
Takeda
,
S.
,
Okazaki
,
H.
, and
Tamaki
,
S.
,
1982
, “
Specific Heat of Liquid In-Te Alloys
,”
J. Phys. C
,
15
, pp.
5203
5210
.
64.
Takeda
,
S.
,
Tamaki
,
S.
,
Takano
,
A.
, and
Okazaki
,
H.
,
1983
, “
Specific Heat of Liquid Ga-Te Alloys
,”
J. Phys. C
,
16
, pp.
467
471
.
65.
Mills
,
K. C.
,
1976
, “
Molar Heat Capacities and Enthalpies of Transition for InSe(c), InSe1.2 and In2Se3,
High Temp.-High Press.
,
8
, pp.
225
230
.
66.
Mamedov
,
K. K.
,
Kerimov
,
I. G.
,
Kostryukov
,
V. N.
, and
Mekhtiev
,
M. I.
,
1967
, “
Specific Heat of Gallium Selenide and Thallium Selenide
,”
Sov. Phys. Semicond.
,
1
, pp.
363
364
.
67.
Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J., 1961, Handbook of Thermophysical Properties of Solid Materials, Vol. III, Ceramics, Macmillan, New York, pp. 891–896.
68.
Lewis, G. N., and Randall, M., 1961, Thermodynamics, 2nd ed., revised by K. S. Pitzer and L. Brewer, McGraw-Hill, New York.
69.
Singh
,
N. B.
,
Henningsen
,
T.
,
Balakrishna
,
V.
,
Suhre
,
D. R.
,
Fernelius
,
N.
,
Hopkins
,
F. K.
, and
Zelmon
,
D. E.
,
1996
, “
Growth and Characterization of Gallium Selenide Crystals for Far-Infrared Conversion Applications
,”
J. Cryst. Growth
,
163
, pp.
398
402
.
70.
Manfredotti
,
C.
,
Murri
,
R.
,
Rizzo
,
A.
,
Galassini
,
S.
, and
Ruggiero
,
L.
,
1974
, “
Deep Hole Traps in p-type GaSe Single Crystals
,”
Phys. Rev. B
,
10
, pp.
3387
3393
.
71.
Nakatani
,
H.
,
Sakai
,
E.
,
Tatsuyama
,
C.
, and
Takeda
,
F.
,
1989
, “
GaSe Nuclear Particle Detectors
,”
Nucl. Instrum. Methods Phys. Res. A
,
283
, pp.
303
309
.
72.
Rizzo
,
A.
,
DeBlasi
,
C.
,
Catalano
,
M.
, and
Cavaliere
,
P.
,
1988
, “
Dislocations in AIIIBVI Single Crystals
,”
Phys. Status Solidi A
,
105
, pp.
101
112
.
73.
De Blasi
,
C.
,
Manno
,
D.
, and
Rizzo
,
A.
,
1989
, “
Convergent-Beam Electron Diffraction Study of Melt- and Vapour-Grown Single Crystals of Gallium Chalcogenides
,”
Il Nuovo Cimento
,
11D
, pp.
1145
1163
.
74.
Manfredotti
,
C.
,
Mancini
,
A. M.
,
Murri
,
R.
,
Rizzo
,
A.
, and
Vasanelli
,
L.
,
1977
, “
Electrical Properties of p-Type GaSe
,”
Il Nuovo Cimento
,
39B
, pp.
257
268
.
75.
Lendvay
,
E.
,
Kuhn
,
A.
,
Chevy
,
A.
, and
Ceva
,
T.
,
1971
, “
Dislocation Etching of GaSe Single Crystals
,”
J. Mater. Sci.
,
6
, pp.
305
308
.
76.
Rustamov
,
P. G.
,
Melikova
,
Z. D.
,
Nasirov
,
Y. N.
, and
Alidzhanov
,
M. A.
,
1969
, “
Preparation of Single Crystals of Solid Solutions of Alloys of the System GaS-GaSe and Study of Their Physical Properties
,”
Inorg. Mater.
,
5
, pp.
750
752
.
77.
Guseinov
,
G. D.
, and
Rasulov
,
A. I.
,
1966
, “
Heat Conductivity Study of GaSe Monocrystals
,”
Phys. Status Solidi
,
18
, pp.
911
922
.
78.
Brandon
S.
, and
Derby
,
J. J.
,
1992
, “
Heat Transfer in Vertical Bridgman Growth of Oxides: Effects of Conduction, Convection, and Internal Radiation
,”
J. Cryst. Growth
,
121
, pp.
473
494
.
79.
Rustamov
,
P. G.
,
Il’yasov
,
T. M.
,
Safarov
,
M. G.
, and
Sadykhova
,
S. A.
,
1979
, “
Projection of the Liquidus of the As, Ga∥Se, Te System
,”
Russ. J. Inorg. Chem.
,
24
, pp.
263
266
.
80.
Il’yasov
,
T. M.
, and
Rustamov
,
P. G.
,
1982
, “
Chemical Interaction and Glass Formation in Chalcogenide Systems of the As2X3-GaX Type
,”
Russ. J. Inorg. Chem.
,
27
, pp.
1500
1503
.
81.
Rustamov
,
P. G.
,
Melikova
,
Z. D.
,
Safarov
,
M. G.
, and
Alidzhanov
,
M. A.
,
1965
, “
Solid Solutions in the System GaS-GaSe
,”
Inorg. Mater.
,
1
, pp.
387
389
.
82.
Rustamov
,
P. G.
,
Babaeva
,
B. K.
, and
Luzhnaya
,
N. P.
,
1965
, “
The Interaction of Gallium with Selenium
,”
Inorg. Mater.
,
1
, pp.
775
776
.
83.
Muschinsky
,
W. P.
, and
Pawelenko
,
N. M.
,
1969
, “
Untersuchung des Systems GaSe-InSe
,”
Krist. Tech.
,
4
, No.
2
, pp.
K5–K7
K5–K7
.
84.
Palatnik
,
L. S.
, and
Belova
,
E. K.
,
1996
, “
Investigation of the Ga-Se Phase Diagram
,”
Inorg. Mater.
,
2
, pp.
657
659
.
85.
Kumar
,
S.
, and
Singh
,
R. N.
,
1995
, “
Thermal Conductivity of Polycrystalline Materials
,”
J. Am. Ceram. Soc.
,
78
, pp.
728
736
.
86.
Parfeniev
,
R. V.
,
Farbshtein
,
I. I.
,
Shulpina
,
I. L.
,
Yakimov
,
S. V.
,
Shalimov
,
V. P.
,
Turchaninov
,
A. M.
,
Ivanov
,
A. I.
, and
Savin
,
S. F.
,
2000
, “
Solidification of Anisotropic Semiconducting Material—Tellurium under Microgravity Conditions
,”
Mater. Sci. Forum
,
329/330
, pp.
297
304
.
87.
Batur
,
C.
,
Srinivasan
,
A.
,
Duval
,
W. M. B.
, and
Singh
,
N. B.
,
1995
, “
Control of Crystal Growth in Bridgman Furnace
,”
Prog. Cryst. Growth Charact. Mater.
,
30
, pp.
217
236
.
You do not currently have access to this content.