A numerical study is conducted to estimate the thermal contact resistance (TCR) between the tool and the workpiece during slow nonisothermal forging processes. A finite difference method is used to determine the TCR from a thermomechanical microscopic model. Correlations of the numerical results are developed for the TCR as a function of the interface geometry and the thermal properties. The method used to introduce these correlations in forging softwares, to account for a time and space-dependent TCR instead of a constant arbitrary value, is given. The predictive capability of the correlations is partially validated by comparing their outputs with TCR results from the literature. [S0022-1481(00)00903-8]
1.
Kellow
, M. A.
, Bramley
, A. N.
, and Bannister
, F. K.
, 1969
, “The Measurement of Temperatures in Forging Dies
,” Int. J. Mach. Tool Des. Res.
, 9
, pp. 239
–260
.2.
Baillet, L., and Boyer, J. C., 1994, “A Friction Model for Closed-Die Forging F.E.M. Simulation,” Metal Forming Process Simulation in Industry, Vol. 1, Int. Com. Thugensorganisation Mu¨nchengladbach, Baden-Baden, Germany, pp. 132–145.
3.
Jinka, G. K., Fourment, L., and Bellet, M., 1995, “Numerical Simulation of Hot Powder Forging of Connecting Rod,” Simulation of Materials Processing: Theory, Methods and Applications, Shen and Dawson, eds. pp. 833–838.
4.
Fenech
, H.
, and Rohsenow
, W. M.
, 1963
, “Prediction of the Thermal Conductance of Metallic Surfaces in Contact
,” ASME J. Heat Transfer
, 85
, pp. 15
–24
.5.
Fletcher
, L. S.
, 1988
, “Recent Developments in Contact Conductance Heat Transfer
,” ASME J. Heat Transfer
, 110
, pp. 1059
–1070
.6.
Bardon
, J. P.
, 1994
, “Bases physiques des conditions de contact thermique imparfait entre milieux en glissement relatif
,” Rev. Gen. Therm.
, 386
, pp. 85
–91
.7.
Laraqi
, N.
, 1997
, “Velocity and Relative Contact Size Effects on the Thermal Constriction Resistance in Sliding Solids
,” ASME J. Heat Transfer
, 119
, No. 1
, pp. 173
–177
.8.
Lambert
, M. A.
, and Fletcher
, L. S.
, 1997
, “Review of Models for Thermal Contact Conductance of Metals
,” J. Thermophys. Heat Transfer
, 11
, No. 2
, pp. 129
–140
.9.
Dadras
, P.
, and Wells
, W. R.
, 1984
, “Heat Transfer Aspects of Nonisothermal Axisymmetric Upset Forging
,” J. Eng. Ind.
, 106
, pp. 187
–195
.10.
Burte
, P. R.
, Yong-Taek
, I. M.
, Altan
, T.
, and Semiatin
, S. L.
, 1990
, “Measurement and Analysis of Heat Transfer and Friction During Hot Forging
,” J. Eng. Ind.
, 112
, pp. 332
–339
.11.
Vinod
, K. J.
, 1990
, “Determination of Heat Transfer Coefficient for Forging Applications
,” J. Mater. Shap. Technol.
, 8
, No. 3
, pp. 193
–202
.12.
Dean
, T. A.
, and Silva
, T. M.
, 1979
, “Die Temperatures During Production Drop Forging
,” J. Eng. Ind.
, 101
, pp. 385
–390
.13.
Lenard
, J. G.
, and Davies
, M. E.
, 1995
, “The Distribution of Temperature in a Hot/Cold Die Set: The Effect of the Pressure, Temperature and Material
,” J. Eng. Mater. Technol.
, 117
, pp. 220
–227
.14.
Malinowski
, Z.
, Lenard
, J. G.
, and Davies
, M. E.
, 1994
, “A Study of Heat Transfer Coefficient as a Function of Temperature and Pressure
,” J. Eng. Mater. Technol.
, 41
, pp. 125
–142
.15.
Goizet, V., Bourouga, B., and Bardon, J. P., 1998, “Experimental Study of the Thermal Boundary Condition at the Workpiece-Die Interface During Hot Forging,” Proceedings of 11th IHTC, Vol. 5, Kyongju, Korea, Aug. 23–28, Taylor and Francis, London, pp. 15–20.
16.
Mikic
, B. B.
, 1974
, “Thermal Contact Conductance, Theoretical Considerations
” Int. J. Heat Mass Transf.
, 17
, No. 22
, pp. 205
–214
.17.
Bardon
, J. P.
, 1972
, “Introduction a` l’e´tude des re´sistances thermiques de contact
,” Rev. Gen. Therm.
, 125
, pp. 429
–446
.18.
Snaith
, B.
, Probert
, S. D.
, and O’Callaghan
, P. W.
, 1986
, “Thermal Resistances of Pressed Contacts
,” Appl. Energy
, 22
, pp. 31
–84
.19.
Sridhar
, M. R.
, and Yovanovich
, N. M.
, 1994
, “Review of Elastic and Plastic Contact Conductance Models: Comparison With Experiment
,” J. Thermophys. Heat Transfer
, 8
, No. 4
, pp. 633
–640
.20.
Sridhar
, M. R.
, and Yovanovich
, N. M.
, 1996
, “Elastoplastic Contact Conductance Model for Isotropic Conforming Rough Surfaces and Comparison With Experiments
,” ASME J. Heat Transfer
, 118
, pp. 3
–9
.21.
Challen
, J. M.
, Mc Lean
, L. J.
, and Oxley
, P. L. B.
, 1984
, “Plastic Deformation of a Metal Surface in Sliding Contact With a Hard Wedge: Its Reaction to Friction and Wear
,” Proc. R. Soc. London, Ser. A
, 394
, pp. 161
–181
.22.
Johnson, W., Sowerby, R., and Venter, R. D., 1982, Plane Strain Slip Line Fields for Metal Deformation Processes: A Source Book and Bibliography, Pergamon, Tarrytown, NY.
23.
Kennedy
, F. E.
, 1984
, “Thermal and Thermomechanical Effect in Dry Sliding
,” Wear
, 100
, pp. 453
–476
.24.
Chantrenne
, P.
, and Raynaud
, M.
, 1997
, “A Microscopic Thermal Model for Dry Sliding Contact
,” Int. J. Heat Mass Transf.
, 40
, No. 5
, pp. 1083
–1094
.25.
Beck
, J. V.
, and Keltner
, N. R.
, 1982
, “Transient Thermal Contact of Two Semi-Infinite Bodies Over a Circular Area
,” Spacecraft Radi. Transfer Temp. Control
, 83
, pp. 61
–80
.26.
Sadhal
, S. S.
, 1981
, “Unsteady Heat Flow Between Solids With Partially Contacting Interface
,” ASME J. Heat Transfer
, 103
, pp. 32
–35
.27.
Li, Y. H., and Sellars, C. M., 1996, “Evaluation of Interfacial Heat Transfer and Friction Conditions and Their Effects on Hot Forming Processes,” 37th MWSP Conf. Proc., ISS, 33, pp. 385–393.
28.
Chantrenne, P., and Raynaud, M., 1996, “De´termination nume´rique de la re´sistance thermique de contact entre deux solides en frottement sec a` partir d’un mode`le thermique microscopique,” Annual Congress of the SFT, Elsevier, New York.
29.
Wong, H. Y., 1968, “Fundamental Studies of the Thermal Conductance of Metallic Contacts,” Proceedings of the 8th Conference on Thermal Conductivity, Plenum, New York, pp. 495–511.
30.
Marchand, A. S., Salle, E., Raynaud, M., and Boyer, J. C., 1999, “Influence of a Time and Space TCR on the Workpiece Thermo-Mechanical Behavior During Hot Forming Process,” ESAFORM Congress, Portugal.
Copyright © 2000
by ASME
You do not currently have access to this content.