A numerical study is conducted to estimate the thermal contact resistance (TCR) between the tool and the workpiece during slow nonisothermal forging processes. A finite difference method is used to determine the TCR from a thermomechanical microscopic model. Correlations of the numerical results are developed for the TCR as a function of the interface geometry and the thermal properties. The method used to introduce these correlations in forging softwares, to account for a time and space-dependent TCR instead of a constant arbitrary value, is given. The predictive capability of the correlations is partially validated by comparing their outputs with TCR results from the literature. [S0022-1481(00)00903-8]

1.
Kellow
,
M. A.
,
Bramley
,
A. N.
, and
Bannister
,
F. K.
,
1969
, “
The Measurement of Temperatures in Forging Dies
,”
Int. J. Mach. Tool Des. Res.
,
9
, pp.
239
260
.
2.
Baillet, L., and Boyer, J. C., 1994, “A Friction Model for Closed-Die Forging F.E.M. Simulation,” Metal Forming Process Simulation in Industry, Vol. 1, Int. Com. Thugensorganisation Mu¨nchengladbach, Baden-Baden, Germany, pp. 132–145.
3.
Jinka, G. K., Fourment, L., and Bellet, M., 1995, “Numerical Simulation of Hot Powder Forging of Connecting Rod,” Simulation of Materials Processing: Theory, Methods and Applications, Shen and Dawson, eds. pp. 833–838.
4.
Fenech
,
H.
, and
Rohsenow
,
W. M.
,
1963
, “
Prediction of the Thermal Conductance of Metallic Surfaces in Contact
,”
ASME J. Heat Transfer
,
85
, pp.
15
24
.
5.
Fletcher
,
L. S.
,
1988
, “
Recent Developments in Contact Conductance Heat Transfer
,”
ASME J. Heat Transfer
,
110
, pp.
1059
1070
.
6.
Bardon
,
J. P.
,
1994
, “
Bases physiques des conditions de contact thermique imparfait entre milieux en glissement relatif
,”
Rev. Gen. Therm.
,
386
, pp.
85
91
.
7.
Laraqi
,
N.
,
1997
, “
Velocity and Relative Contact Size Effects on the Thermal Constriction Resistance in Sliding Solids
,”
ASME J. Heat Transfer
,
119
, No.
1
, pp.
173
177
.
8.
Lambert
,
M. A.
, and
Fletcher
,
L. S.
,
1997
, “
Review of Models for Thermal Contact Conductance of Metals
,”
J. Thermophys. Heat Transfer
,
11
, No.
2
, pp.
129
140
.
9.
Dadras
,
P.
, and
Wells
,
W. R.
,
1984
, “
Heat Transfer Aspects of Nonisothermal Axisymmetric Upset Forging
,”
J. Eng. Ind.
,
106
, pp.
187
195
.
10.
Burte
,
P. R.
,
Yong-Taek
,
I. M.
,
Altan
,
T.
, and
Semiatin
,
S. L.
,
1990
, “
Measurement and Analysis of Heat Transfer and Friction During Hot Forging
,”
J. Eng. Ind.
,
112
, pp.
332
339
.
11.
Vinod
,
K. J.
,
1990
, “
Determination of Heat Transfer Coefficient for Forging Applications
,”
J. Mater. Shap. Technol.
,
8
, No.
3
, pp.
193
202
.
12.
Dean
,
T. A.
, and
Silva
,
T. M.
,
1979
, “
Die Temperatures During Production Drop Forging
,”
J. Eng. Ind.
,
101
, pp.
385
390
.
13.
Lenard
,
J. G.
, and
Davies
,
M. E.
,
1995
, “
The Distribution of Temperature in a Hot/Cold Die Set: The Effect of the Pressure, Temperature and Material
,”
J. Eng. Mater. Technol.
,
117
, pp.
220
227
.
14.
Malinowski
,
Z.
,
Lenard
,
J. G.
, and
Davies
,
M. E.
,
1994
, “
A Study of Heat Transfer Coefficient as a Function of Temperature and Pressure
,”
J. Eng. Mater. Technol.
,
41
, pp.
125
142
.
15.
Goizet, V., Bourouga, B., and Bardon, J. P., 1998, “Experimental Study of the Thermal Boundary Condition at the Workpiece-Die Interface During Hot Forging,” Proceedings of 11th IHTC, Vol. 5, Kyongju, Korea, Aug. 23–28, Taylor and Francis, London, pp. 15–20.
16.
Mikic
,
B. B.
,
1974
, “
Thermal Contact Conductance, Theoretical Considerations
Int. J. Heat Mass Transf.
,
17
, No.
22
, pp.
205
214
.
17.
Bardon
,
J. P.
,
1972
, “
Introduction a` l’e´tude des re´sistances thermiques de contact
,”
Rev. Gen. Therm.
,
125
, pp.
429
446
.
18.
Snaith
,
B.
,
Probert
,
S. D.
, and
O’Callaghan
,
P. W.
,
1986
, “
Thermal Resistances of Pressed Contacts
,”
Appl. Energy
,
22
, pp.
31
84
.
19.
Sridhar
,
M. R.
, and
Yovanovich
,
N. M.
,
1994
, “
Review of Elastic and Plastic Contact Conductance Models: Comparison With Experiment
,”
J. Thermophys. Heat Transfer
,
8
, No.
4
, pp.
633
640
.
20.
Sridhar
,
M. R.
, and
Yovanovich
,
N. M.
,
1996
, “
Elastoplastic Contact Conductance Model for Isotropic Conforming Rough Surfaces and Comparison With Experiments
,”
ASME J. Heat Transfer
,
118
, pp.
3
9
.
21.
Challen
,
J. M.
,
Mc Lean
,
L. J.
, and
Oxley
,
P. L. B.
,
1984
, “
Plastic Deformation of a Metal Surface in Sliding Contact With a Hard Wedge: Its Reaction to Friction and Wear
,”
Proc. R. Soc. London, Ser. A
,
394
, pp.
161
181
.
22.
Johnson, W., Sowerby, R., and Venter, R. D., 1982, Plane Strain Slip Line Fields for Metal Deformation Processes: A Source Book and Bibliography, Pergamon, Tarrytown, NY.
23.
Kennedy
,
F. E.
,
1984
, “
Thermal and Thermomechanical Effect in Dry Sliding
,”
Wear
,
100
, pp.
453
476
.
24.
Chantrenne
,
P.
, and
Raynaud
,
M.
,
1997
, “
A Microscopic Thermal Model for Dry Sliding Contact
,”
Int. J. Heat Mass Transf.
,
40
, No.
5
, pp.
1083
1094
.
25.
Beck
,
J. V.
, and
Keltner
,
N. R.
,
1982
, “
Transient Thermal Contact of Two Semi-Infinite Bodies Over a Circular Area
,”
Spacecraft Radi. Transfer Temp. Control
,
83
, pp.
61
80
.
26.
Sadhal
,
S. S.
,
1981
, “
Unsteady Heat Flow Between Solids With Partially Contacting Interface
,”
ASME J. Heat Transfer
,
103
, pp.
32
35
.
27.
Li, Y. H., and Sellars, C. M., 1996, “Evaluation of Interfacial Heat Transfer and Friction Conditions and Their Effects on Hot Forming Processes,” 37th MWSP Conf. Proc., ISS, 33, pp. 385–393.
28.
Chantrenne, P., and Raynaud, M., 1996, “De´termination nume´rique de la re´sistance thermique de contact entre deux solides en frottement sec a` partir d’un mode`le thermique microscopique,” Annual Congress of the SFT, Elsevier, New York.
29.
Wong, H. Y., 1968, “Fundamental Studies of the Thermal Conductance of Metallic Contacts,” Proceedings of the 8th Conference on Thermal Conductivity, Plenum, New York, pp. 495–511.
30.
Marchand, A. S., Salle, E., Raynaud, M., and Boyer, J. C., 1999, “Influence of a Time and Space TCR on the Workpiece Thermo-Mechanical Behavior During Hot Forming Process,” ESAFORM Congress, Portugal.
You do not currently have access to this content.