A mathematical model for predicting the minimum meniscus radius and the maximum heat transport in triangular grooves is presented. In this model, a method for determining the theoretical minimum meniscus radius was developed and used to calculate the capillary heat transport limit based on the physical characteristics and geometry of the capillary grooves. A control volume technique was employed to determine the flow characteristics of the micro heat pipe, in an effort to incorporate the size and shape of the grooves and the effects of the frictional liquid–vapor interaction. In order to compare the heat transport and flow characteristics, a hydraulic diameter, which incorporated these effects, was defined and the resulting model was solved numerically. The results indicate that the heat transport capacity of micro heat pipes is strongly dependent on the apex channel angle of the liquid arteries, the contact angle of the liquid flow, the length of the heat pipe, the vapor flow velocity and characteristics, and the tilt angle. The analysis presented here provides a mechanism whereby the groove geometry can be optimized with respect to these parameters in order to obtain the maximum heat transport capacity for micro heat pipes utilizing axial grooves as the capillary structure.

1.
Ayyaswamy
P. S.
,
Catton
I.
, and
Edwards
D. K.
,
1974
, “
Capillary Flow in Triangular Grooves
,”
ASME Journal of Applied Mechanics
, Vol.
4l
, pp.
332
336
.
2.
Babin
B. R.
,
Peterson
G. P.
, and
Wu
D.
,
1990
, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
595
601
.
3.
Chi, S. W., 1976, Heat Pipe Theory and Practice, McGraw-Hill, New York.
4.
Cotter, T. P., 1984, “Principles and Prospects of Micro Heat Pipes,” Proc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328–335.
5.
Duncan
A. B.
, and
Peterson
G. P.
,
1995
, “
Charge Optimization for Triangular Shaped Etched Micro Heat Pipe
,”
AIAA Journal of Thermophysics and Heat Transfer
, Vol.
9
, No.
2
, pp.
365
367
.
6.
Gerner, F. M., 1990, Micro Heat Pipes, AFSOR Final Report No. S-210-10Mg-066, Wright-Patterson AFB, Dayton, OH
7.
Gerner, F. M., Longtin, J. P., Henderson, H. T., Hsieh, W. M., Ramadas, P., and Chang, W. S., 1992, “Flow and Heat Transfer Limitations in Micro Heat Pipes,” Proc. ASME Annual Meeting, ASME HTD-Vol. 206-3, pp. 99–104.
8.
Khrustalev
D.
, and
Faghri
A.
,
1994
, “
Thermal Analysis of A Micro Heat Pipe
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, No.
2
, pp.
189
198
.
9.
Longtin
J. P.
,
Badran
B.
, and
Gerner
F. M.
,
1994
, “
A One-Dimensional Model of a Micro Heat Pipe During Steady-State Operation
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
709
715
.
10.
Ma
H. B.
,
Peterson
G. P.
, and
Lu
X. J.
,
1994
, “
The Influence of Vapor-Liquid Interactions on the Liquid Pressure Drop in Triangular Microgrooves
,”
Int. J. Heat Mass Transfer
, Vol.
37
, No.
15
, pp.
2211
2219
.
11.
Ma
H. B.
, and
Peterson
G. P.
,
1996
, “
Experimental Investigation of the Maximum Heat Transport in Triangular Grooves
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, this issue, pp.
740
746
.
12.
Peterson
G. P.
,
1992
, “
Overview of Micro Heat Pipe Research and Development
,”
Appl. Mech. Rev.
, Vol.
45
, No.
5
, pp.
175
189
.
13.
Peterson
G. P.
,
Duncan
A. B.
, and
Weichold
M. H.
,
1993
, “
Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
751
756
.
14.
Peterson, G. P., 1994, An Introduction to Heat Pipes: Modeling, Testing and Applications, Wiley, New York.
15.
Peterson, G. P., 1996, “Modeling, Testing, and Fabrication of Micro Heat Pipes: An Update,” Appl. Mech. Rev., in press.
16.
Peterson
G. P.
, and
Ma
H. B.
,
1996
, “
Analysis of Countercurrent Liquid–Vapor Interaction and the Effect on the Liquid Friction Factor
,”
Experimental Thermal and Fluid Sciences
, Vol.
12
, No.
1
, pp.
13
24
.
17.
Peterson, G. P., Swanson, L. W., and Gerner, F. M., 1996, “Micro Heat Pipes,” in: Microscale Energy Transport, C. L. Tien, A. Majumdar, and F. M. Gerner, eds., Taylor-Francis Publishing Co., Washington DC, in press.
18.
Tien
C. L.
, and
Sun
K. H.
,
1971
, “
Minimum Meniscus Radius of Heat Pipe Wicking Materials
,”
Int. J. Heat Mass Transfer
, Vol.
14
, pp.
1853
1855
.
This content is only available via PDF.
You do not currently have access to this content.