In this study a thermal analysis is performed on the hot dip-coating process where solidification of metal occurs on a bar moving through a finite molten bath. A continuum model is considered that accounts for important transport mechanisms such as axial heat diffusion, buoyancy, and shear-induced melt motion in the bath. A numerical solution procedure is developed, and its predictions are compared with those of an analytical approximate solution, as well as available experimental data. The predictions of the numerical scheme are in good agreement with the experimental data. The results of the approximate solution, however, exhibit significant disagreement with the data, which is attributed to the simplifying assumptions used in its development. Parametric effects of the bath geometry, and initial and boundary temperatures and solid velocity, as characterized by the Reynolds number, Grashof number, and Stefan numbers, are presented.

This content is only available via PDF.
You do not currently have access to this content.