This work investigates whether thin-film optics with a constant refractive index can be applied to high-Tc superconducting thin films. The reflectance and transmittance of YBa2Cu3O7 films on LaAlO3 substrates are measured using a Fourier-transform infrared spectrometer at wavelengths from 1 to 100 μm at room temperature. The reflectance of these superconducting films at 10 K in the wavelength region from 2.5 to 25 μm is measured using a cryogenic reflectance accessory. The film thickness varies from 10 to 200 nm. By modeling the frequency-dependent complex conductivity in the normal and superconducting states and applying electromagnetic-wave theory, the complex refractive index of YBa2Cu3O7 films is obtained with a fitting technique. It is found that a thickness-independent refractive index can be applied even to a 25 nm film, and average values of the spectral refractive index for film thicknesses between 25 and 200 nm are recommended for engineering applications.

This content is only available via PDF.
You do not currently have access to this content.