Abstract

In this paper, the results of a large eddy simulation (LES) study on hydrogen microjets (dj 0.5 mm) injected into a hot (1600 K) vitiated crossflow at different angles, namely, normal (90 deg) and inclined jet (30 deg), are presented. The goal is to explore the effects of injection angle on coherent turbulent structure formations, flame–vortex interactions, and wall heat flux contributions. The LES identifies the presence of the horseshoe vortex, the shear layer vortices (SLV), and the counter-rotating vortex pair (CVP), along with the shedding of spanwise-symmetry hairpin vortices in both the normal and inclined jets. The structures in the latter, however, appear more convoluted. In the near field, the SLV-induced flow is found to play a key role in the mixing and flame propagation in the windward side of the jet that is stabilized through the auto-ignition process along the front edge of both the normal and inclined jets close to their exits. The flame-shear layer offset phenomenon is also noticed on the windward side of the jets. In the far field, the CVP is found to be the dominating mechanism in the entrainment of the hot vitiated crossflow by the reacting jet and large-scale mixing. Its induced counter-rotating flow field give rises to the flame propagation and the heat and species transfer from the windward to the leeward side of the jet near the injection wall. In the wake region, the combustion and its byproducts persist in closer proximity to the jet exit of the normal case because of the presence of a much stronger recirculation zone behind the jet. Accordingly, higher wall heat fluxes are obtained in this region for the normal jet. The mean wall heat flux values of both the normal and inclined jets decrease and approach each other with moving away from the jet exit in the streamwise direction. The findings indicate that the CVP-induced flow drastically increases heat transfer to the near wall region, resulting in a spanwise-symmetry heat flux profile with double peaks in downstream. The results of the present LES study are compared to the experimental data available in the literature by considering instantaneous hydroxide (OH) fields and mean wall heat fluxes.

References

1.
Karagozian
,
A. R.
,
2010
, “
Transverse Jets and Their Control
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
531
553
.10.1016/j.pecs.2010.01.001
2.
Broumand
,
M.
, and
Birouk
,
M.
,
2016
, “
Liquid Jet in a Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges
,”
Prog. Energy Combust. Sci.
,
57
, pp.
1
29
.10.1016/j.pecs.2016.08.003
3.
Martin
,
S. M.
,
Cai
,
W.
,
Harris
,
J.
, and
Arthur
,
J.
,
2013
, “
Apparatus and Method for Controlling the Secondary Injection of Fuel
,” U.S. Patent No. 8,387,398.
4.
Laster
,
W. R.
,
Martin
,
S. M.
,
Portillo
,
B.
,
Hardes
,
J.
, and
Fox
,
T. A.
,
2018
, “
Dual Outlet Nozzle for a Secondary Fuel Stage of a Combustor of a Gas Turbine Engine
,” U.S. Patent No. 10,139,111.
5.
Venkataraman
,
K. K.
,
Terry
,
J. C.
,
Velkur
,
C. B.
, and
Karim
,
H.
,
2014
, “
Late Lean Injection Fuel Staging Configurations
,” U.S. Patent No. 8,707,707 B2.
6.
Venkataraman
,
K. K.
,
Washam
,
R. M.
,
Karim
,
H.
,
Terry
,
J. C.
, and
Davis
,
L. B.
, Jr.
,
2014
, “
Late Lean Injection System Configuration
,” U.S. Patent No. 8,701,383 B2.
7.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
,
Naumann
,
C.
, and
Aigner
,
M.
,
2013
, “
Autoignition of Hydrogen/Nitrogen Jets in Vitiated Air Crossflows at Different Pressures
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3185
3192
.10.1016/j.proci.2012.05.039
8.
Nair
,
V.
,
Wilde
,
B.
,
Emerson
,
B.
, and
Lieuwen
,
T.
,
2019
, “
Shear Layer Dynamics in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5173
5180
.10.1016/j.proci.2018.06.031
9.
Nair
,
V.
,
Sirignano
,
M.
,
Emerson
,
B.
,
Halls
,
B.
,
Jiang
,
N.
,
Felver
,
J.
,
Roy
,
S.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2019
, “
Counter Rotating Vortex Pair Structure in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1489
1496
.10.1016/j.proci.2018.06.059
10.
Nair, V., Sirignano, M., Emerson
,
B. L.
, and Lieuwen, T. C.,
2022
, “
Combustion and Flame Position Impacts on Shear Layer Dynamics in a Reacting Jet in Cross-Flow
,”
J. Fluid Mech.
,
942
, p.
A41
.10.1017/jfm.2022.387
11.
Sidey
,
J.
, and
Mastorakos
,
E.
,
2015
, “
Visualization of MILD Combustion From Jets in Cross-Flow
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3537
3545
.10.1016/j.proci.2014.07.028
12.
Wang
,
Z.
,
Wang
,
Y.
, and
Liu
,
X.
,
2023
, “
Lift-Off Region Temperature Field and Planar Flow Field of a Twin-Nozzle Reacting Jet in Hot Crossflow
,”
Proc. Combust. Inst.
,
39
(
1
), pp.
1269
1278
.10.1016/j.proci.2022.08.123
13.
Schmitt
,
D.
,
Kolb
,
M.
,
Weinzierl
,
J.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2013
, “
Ignition and Flame Stabilization of a Premixed Jet in Hot Cross Flow
,”
ASME
Paper No. GT2013-94763.10.1115/GT2013-94763
14.
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081901
.10.1115/1.4032421
15.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.10.1016/j.combustflame.2015.07.010
16.
Dayton
,
J. W.
,
Linevitch
,
K.
, and
Cetegen
,
B. M.
,
2019
, “
Ignition and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2417
2424
.10.1016/j.proci.2018.08.051
17.
Schulz
,
O.
, and
Noiray
,
N.
,
2019
, “
Large Eddy Simulation of a Premixed Flame in Hot Vitiated Crossflow With Analytically Reduced Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031014
.10.1115/1.4041205
18.
Schulz
,
O.
,
Piccoli
,
E.
,
Felden
,
A.
,
Staffelbach
,
G.
, and
Noiray
,
N.
,
2019
, “
Autoignition-Cascade in the Windward Mixing Layer of a Premixed Jet in Hot Vitiated Crossflow
,”
Combust. Flame
,
201
, pp.
215
233
.10.1016/j.combustflame.2018.11.012
19.
Cheng
,
M.
,
Wang
,
H.
,
Luo
,
K.
, and
Fan
,
J.
,
2023
, “
A DNS Study on the Flame Structures and Flame Stabilization Mechanism of a Laboratory-Scale Lean Premixed Jet Flame in Crossflow
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2309
2317
.10.1016/j.proci.2022.09.009
20.
Cheng
,
M.
,
Fan
,
J.
,
Luo
,
K.
, and
Wang
,
H.
,
2023
, “
A Direct Numerical Simulation Study on the Structures and Turbulence–Flame Interactions of a Laboratory-Scale Lean Premixed Jet Flame in Cross-Flow
,”
J. Fluid Mech.
,
957
, p.
A27
.10.1017/jfm.2023.78
21.
Micka
,
D. J.
, and
Driscoll
,
J. F.
,
2012
, “
Stratified Jet Flames in a Heated (1390 K) Air Cross-Flow With Autoignition
,”
Combust. Flame
,
159
(
3
), pp.
1205
1214
.10.1016/j.combustflame.2011.10.013
22.
Steinberg
,
A. M.
,
Sadanandan
,
R.
,
Dem
,
C.
,
Kutne
,
P.
, and
Meier
,
W.
,
2013
, “
Structure and Stabilization of Hydrogen Jet Flames in Cross-Flows
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1499
1507
.10.1016/j.proci.2012.06.026
23.
Grout
,
R. W.
,
Gruber
,
A.
,
Yoo
,
C. S.
, and
Chen
,
J. H.
,
2011
, “
Direct Numerical Simulation of Flame Stabilization Downstream of a Transverse Fuel Jet in Cross-Flow
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1629
1637
.10.1016/j.proci.2010.06.013
24.
Kolla
,
H.
,
Grout
,
R. W.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2012
, “
Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow
,”
Combust. Flame
,
159
(
8
), pp.
2755
2766
.10.1016/j.combustflame.2012.01.012
25.
Saini
,
P.
,
Chterev
,
I.
,
Pareja
,
J.
,
Aigner
,
M.
, and
Boxx
,
I.
,
2020
, “
Effect of Pressure on Hydrogen Enriched Natural Gas Jet Flames in Crossflow
,”
Flow, Turbul. Combust.
,
105
(
3
), pp.
787
806
.10.1007/s10494-020-00148-8
26.
Saini
,
P.
,
Chterev
,
I.
,
Pareja
,
J.
,
Aigner
,
M.
, and
Boxx
,
I.
,
2021
, “
Effects of Hydrogen-Enrichment on Flame-Holding of Natural Gas Jet Flames in Crossflow at Elevated Temperature and Pressure
,”
Flow, Turbul. Combust.
,
107
(
1
), pp.
219
243
.10.1007/s10494-020-00230-1
27.
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Castellani
,
S.
,
Nassini
,
P. C.
,
Andreini
,
A.
, and
Boxx
,
I.
,
2023
, “
Partially Premixed Hydrogen-Methane Flame Simulations at Relevant Gas Turbine Conditions With a Thickened Flame Model Enhancement
,”
ASME
Paper No. GT2023-102427.10.1115/GT2023-102427
28.
Castellani
,
S.
,
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Boxx
,
I.
, and
Andreini
,
A.
,
2023
, “
High-Fidelity H2–CH4 Jet in Crossflow Modelling With a Flame Index-Controlled Artificially Thickened Flame Model
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35291
35304
.10.1016/j.ijhydene.2023.05.210
29.
Dalshad
,
R.
,
Sander
,
T.
, and
Pfitzner
,
M.
,
2021
, “
Characterization of a Newly Designed Test Bench for Investigations of Flame-Wall-Interaction
,”
ASME
Paper No. GT2021-59170.10.1115/GT2021-59170
30.
Dalshad
,
R.
,
Sander
,
T.
,
Fischer
,
L.
,
Breda
,
P.
, and
Pfitzner
,
M.
,
2023
, “
Investigation of Reacting Fuel Jets in Hot Vitiated Crossflow
,”
Aerosp. Sci. Technol.
,
132
, p.
108084
.10.1016/j.ast.2022.108084
31.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
32.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
33.
Fischer
,
L.
,
Dalshad
,
R.
,
Breda
,
P.
, and
Pfitzner
,
M.
,
2022
, “
Dataset Providing Boundary Conditions of an Experimental Test Bench to Numerically Investigate Flame Wall Interactions Using CFD
,”
Data Br
ief,
45
, p.
108617
.10.1016/j.dib.2022.108617
34.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J.-P.
, and
Sergent
,
E.
,
2006
, “
Specification of LES Inlet Boundary Condition Using Vortex Method
,”
Prog. Comput. Fluid Dyn.
,
6
(
1/2/3
), pp.
58
67
.10.1504/PCFD.2006.009483
35.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
, et al.,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
36.
ANSYS
,
2023
, “
ANSYS: Fluent Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
37.
Cavar
,
D.
, and
Meyer
,
K. E.
,
2012
, “
LES of Turbulent Jet in Cross-Flow—Part 1: A Numerical Validation Study
,”
Int. J. Heat Fluid Flow
,
36
, pp.
18
34
.10.1016/j.ijheatfluidflow.2011.12.009
38.
Fröhlich
,
J.
,
Leschziner
,
M. A.
,
Mellen
,
C. P.
,
Rodi
,
W.
, and
Temmerman
,
L.
,
2005
, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
526
, pp.
19
66
.10.1017/S0022112004002812
39.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.10.1088/1367-2630/6/1/035
40.
Fischer
,
L.
,
Breda
,
P.
,
Dalshad
,
R.
, and
Pfitzner
,
M.
,
2021
, “
Numerical Characterization of a Novel Test Bench Featuring Secondary Reactions of Methane
,”
Aerosp. Sci. Technol.
,
119
, p.
107203
.10.1016/j.ast.2021.107203
41.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.10.1146/annurev-fluid-120710-101115
42.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
43.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
44.
Lim
,
T. T.
,
New
,
T. H.
, and
Luo
,
S. C.
,
2001
, “
On the Development of Large-Scale Structures of a Jet Normal to a Cross Flow
,”
Phys. Fluids
,
13
(
3
), pp.
770
775
.10.1063/1.1347960
45.
Ilak
,
M.
,
Schlatter
,
P.
,
Bagheri
,
S.
, and
Henningson
,
D. S.
,
2012
, “
Bifurcation and Stability Analysis of a Jet in Cross-Flow: Onset of Global Instability at a Low Velocity Ratio
,”
J. Fluid Mech.
,
696
, pp.
94
121
.10.1017/jfm.2012.10
46.
Klotz
,
L.
,
Gumowski
,
K.
, and
Wesfreid
,
J. E.
,
2019
, “
Experiments on a Jet in a Crossflow in the Low-Velocity-Ratio Regime
,”
J. Fluid Mech.
,
863
, pp.
386
406
.10.1017/jfm.2018.974
47.
Acarlar
,
M. S.
, and
Smith
,
C. R.
,
1987
, “
A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 2. Hairpin Vortices Generated by Fluid Injection
,”
J. Fluid Mech.
,
175
, pp.
43
83
.10.1017/S0022112087000284
48.
Sau
,
R.
, and
Mahesh
,
K.
,
2008
, “
Dynamics and Mixing of Vortex Rings in Crossflow
,”
J. Fluid Mech.
,
604
, pp.
389
409
.10.1017/S0022112008001328
49.
Karagozian
,
A. R.
,
1986
, “
The Flame Structure and Vorticity Generated by a Chemically Reactingtransverse Jet
,”
AIAA J.
,
24
(
9
), pp.
1502
1507
.10.2514/3.9472
50.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 1. Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
,
443
, pp.
1
25
.10.1017/S0022112001005146
51.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging
,”
J. Fluid Mech.
,
443
, pp.
27
68
.10.1017/S0022112001005158
You do not currently have access to this content.