Abstract

An experimental investigation in a sector (20deg) of full-scale annular gas turbine combustor is performed. The sector combustor is optically accessible for the flow and flame visualization of the primary and exit zones of the combustor. The distinctive feature of the experimental setup is that it preserves the geometrical details of an annular combustor that includes the casing, dome and combustor liner. The combustor design features a series of primary and secondary dilution holes with multiple film cooling strips on the outer and inner liner. In the present study, the combustor is operated at inlet Mach numbers of 0.02–0.3 at operating absolute pressures of 1–5 bar. Static pressure measurements are performed at multiple locations in the rig to characterize the pressure drop across the combustor. Two-dimensional particle image velocimetry (PIV) is performed to measure the velocity fields of the primary and exit zones of the combustor simultaneously. The results show the presence of a central recirculation zone (CRZ), high-velocity annular jets, and a pair of dilution jets in the primary zone of the combustor. The steady-state flow structures are invariant of inlet Mach number and pressures. The relationship between the relative pressure drop across the combustor and the combustor inlet condition is obtained. Mass flowrate and momentum flux are calculated for the flow through the swirler, central recirculation zone, the primary dilution jets, and the exit zone. The paper shows how the flow structures in a realistic combustor change with variations in global combustor parameters.

References

1.
Mongia
,
H.
,
2010
, “
On Continuous NOx Reduction of Aero-Propulsion Engines
,”
AIAA
Paper No.
2010
1329
.10.2514/6.2010-1329
2.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
, Boca Raton, FL.10.1201/9781420086058
3.
Beér
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
, Halsted Press Division, Wiley,
New York
.
4.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
5.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
, “
Swirl Flows
,” Abacus Press, Tunbridge Wells, Kent, UK.
6.
Peckham
,
D. H.
, and
Royal Aircraft Establishment (RAE)
,
1957
,
Preliminary Results of Low Speed Wind Tunnel Tests on a Gothic Wing of Aspect Ratio 1.0
, Royal Aircraft Establishment (RAE), Farnborough, UK.
7.
Sarpkaya
,
T.
,
1971
, “
Vortex Breakdown in Swirling Conical Flows
,”
AIAA J.
,
9
(
9
), pp.
1792
1799
.10.2514/3.49981
8.
Faler
,
J. H.
, and
Leibovich
,
S.
,
1978
, “
An Experimental Map of the Internal Structure of a Vortex Breakdown
,”
J. Fluid Mech.
,
86
(
2
), p.
313
.10.1017/S0022112078001159
9.
Liang
,
H.
, and
Maxworthy
,
T.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.10.1017/S0022112004002629
10.
Mongia
,
H. C.
,
Peterson
,
P. Y.
, and
Gallimore
,
A. D.
,
2001
, “
Swirl Cup Modeling Part1
,”
AIAA
Paper No. 2001-3576.10.2514/6.2001-3576
11.
Hsiao
,
G.
, and
Mongia
,
H.
,
2003
, “
Swirl Cup Modeling Part 2: Inlet Conditions
,”
AIAA
Paper No. 2003-1350.10.2514/6.2003-1350
12.
Giridharan
,
M. G.
,
Mongia
,
H. C.
, and
Singh
,
G.
,
2003
, “
Swirl Cup modeling - Part VI: Dilution Jet Modeling
,”
AIAA
Paper No. 2003-1203.10.2514/6.2003-1203
13.
Mongia
,
H. C.
,
2004
, “
Perspective of Combustion Modeling for Gas Turbine Combustors
,”
AIAA
Paper No. 2004-156.10.2514/6.2004-156
14.
Mongia
,
H. C.
, Krishnaswami, S., and Sreedhar, P. S. V. S.,
2007
, “
Comprehensive Gas Turbine Combustion Modeling Methodology
,” Fluent’s
International Aerospace CFD Conference
, Paris, France, June
18
19
.
15.
Mongia
,
H. C.
,
2008
, “
Recent Progress in Comprehensive Modeling of Gas Turbine Combustion
,”
AIAA
Paper No. 2008-1445.10.2514/6.2008-1445
16.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1989
, “
Numerical Calculations of the Flow in Annular Combustor Dump Diffuser Geometries
,”
Proc. Inst. Mech. Eng., Part C
,
203
(
5
), pp.
319
331
.10.1243/PIME_PROC_1989_203_121_02
17.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1991
, “
Isothermal Modeling of Gas Turbine combustors - Computational Study
,”
J. Propul. Power
,
7
(
6
), pp.
1064
1071
.10.2514/3.23428
18.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1989
, “
Isothermal Flow in a Gas Turbine Combustor - a Benchmark Experimental Study
,”
Exp. Fluids
,
7
(
5
), pp.
344
354
.10.1007/BF00198453
19.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1989
, “
Investigation of Swirler/Dilution Jet Flow Split on Primary Zone Flow Patterns in a Water Model Can-Type Combustor
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
310
317
.10.1115/1.3240253
20.
Kumar
,
S.
, and
Basu
,
S.
,
2022
, “
Insight Into the Flow Dynamics of a High Shear Injector Equipped With Center-Body: Suppression of Precessing Vortex Core Oscillations
,”
Phys. Fluids
,
34
(
11
), p.
115149
.10.1063/5.0131385
21.
Kumar
,
S.
,
Rathod
,
D.
, and
Basu
,
S.
,
2022
, “
Experimental Investigation of Performance of High-Shear Atomizer With Discrete Radial-Jet Fuel Nozzle: Mean and Dynamic Characteristics
,”
Flow
,
2
, p.
E31
.10.1017/flo.2022.25
22.
Manoharan
,
K.
,
Frederick
,
M.
,
Clees
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2020
, “
A Weakly Nonlinear Analysis of the Precessing Vortex Core Oscillation in a Variable Swirl Turbulent Round Jet
,”
J. Fluid Mech.
,
884
(
2
), p.
A29
.10.1017/jfm.2019.903
23.
Mohammad
,
B. S.
, and
Jeng
,
S. M.
,
2009
, “
Design Procedures and a Developed Computer Code for Preliminary Single Annular Combustor Design
,”
AIAA
Paper No. 2009-5208.10.2514/6.2009-5208
24.
Mark
,
C. P.
, and
Selwyn
,
A.
,
2016
, “
Design and Analysis of Annular Combustion Chamber of a Low Bypass Turbofan Engine in a Jet Trainer Aircraft
,”
Propul. Power Res.
,
5
(
2
), pp.
97
107
.10.1016/j.jppr.2016.04.001
25.
McGuirk
,
J. J.
,
2014
, “
The Aerodynamic Challenges of Aeroengine Gas-Turbine Combustion Systems
,”
Aeronaut. J.
,
118
(
1204
), pp.
557
599
.10.1017/S0001924000009386
26.
Spencer
,
A.
, and
McGuirk
,
J. J.
,
2001
, “
LDA Measurements of Feed Annulus Effects on Combustor Liner Port Flows1
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
219
227
.10.1115/1.1365932
27.
McGuirk
,
J. J.
, and
Spencer
,
A.
,
2001
, “
Coupled and Uncoupled CFD Prediction of the Characteristics of Jets From Combustor Air Admission Ports
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
327
332
.10.1115/1.1362319
28.
Midgley
,
K.
,
Spencer
,
A.
, and
McGuirk
,
J. J.
,
2005
, “
Unsteady Flow Structures in Radial Swirler Fed Fuel Injectors
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
755
764
.10.1115/1.1925638
29.
Spencer
,
A.
,
McGuirk
,
J. J.
, and
Midgley
,
K.
,
2008
, “
Vortex Breakdown in Swirling Fuel Injector Flows
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021503
.10.1115/1.2799530
30.
Richards
,
C. D.
, and
Samuelsen
,
G. S.
,
1990
, “
The Role of Primary Jet Injection on Mixing in Gas Turbine Combustion
,”
University of California
,
Irvine, CA
, Report No. 92717.
31.
Richards
,
C. D.
, and
Samuelsen
,
G. S.
,
1992
, “
The Role of Primary Jets in the Dome Region Aerodynamics of a Model Can Combustor
,”
University of California
,
Irvine, CA
, Report No. 92717.
32.
Bicen
,
A. F.
,
McGuirk
,
J. J.
, and
Palma
,
J. M. L. M.
,
1989
, “
Modelling Gas Turbine Combustor Flow Fields in Isothermal Flow Experiments
,”
Proc. Inst. Mech. Eng., Part A
,
203
(
2
), pp.
113
122
.10.1243/PIME_PROC_1989_203_015_02
33.
Carrotte
,
J. F.
,
Bailey
,
D. W.
, and
Frodsham
,
C. W.
,
1995
, “
Detailed Measurements on a Modern Combustor Dump Diffuser System
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
678
685
.10.1115/1.2815453
34.
Carrotte
,
J. F.
, and
Stevens
,
S. J.
,
1990
, “
The Influence of Dilution Hole Geometry on Jet Mixing
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
73
79
.10.1115/1.2906480
35.
Wray
,
A.
,
Carrotte
,
J.
, and
Wilson
,
C.
,
1993
, “
The Development of a Large Annular Facility for Testing Gas Turbine Combustor Diffuser Systems
,”
AIAA
Paper No. 93-2546.10.2514/6.93-2546
36.
Slabaugh
,
C. D.
,
Pratt
,
A. C.
,
Lucht
,
R. P.
,
Meyer
,
S. E.
,
Benjamin
,
M.
,
Lyle
,
K.
, and
Kelsey
,
M.
,
2014
, “
The Development of an Optically Accessible, High-Power Combustion Test Rig
,”
Rev. Sci. Instrum.
,
85
(
3
), p.
035105
.10.1063/1.4867084
37.
Brend
,
M. A.
,
Denman
,
P. A.
, and
Carrotte
,
J. F.
,
2020
, “
Volumetric PIV Measurement for Capturing the Port Flow Characteristics Within Annular Gas Turbine Combustors
,”
Exp. Fluids
,
61
(
4
), p.
106
.10.1007/s00348-020-2938-4
38.
Monfort
,
J. R.
,
Stouffer
,
S. D.
,
Hendershott
,
T. H.
,
Wrzesinski
,
P. J.
,
Foley
,
W. S.
, and
Rein
,
K. D.
,
2017
, “
Evaluating Combustion Instability in a Swirl-Stabilized Combustor Using Simultaneous Pressure, Temperature, and Chemiluminescence Measurements at High Repetition Rates
,”
AIAA
Paper No. 2017-1101.10.2514/6.2017-1101
39.
Mohammad
,
B. S.
,
Cai
,
J.
, and
Jeng
,
S. M.
,
2010
, “
Gas Turbine Single Annular Combustor Sector: Aerodynamics
,”
AIAA
Paper No. 2010-579.10.2514/6.2010-579
40.
Mohammad
,
B. S.
, and
Jeng
,
S. M.
,
2011
, “
Gas Turbine Combustor Sector Flow Structure
,”
J. Propul. Power
,
27
(
3
), pp.
710
717
.10.2514/1.B34114
41.
Mohammad
,
B. S.
,
Jeng
,
S. M.
, and
Andac
,
M. G.
,
2011
, “
Influence of the Primary Jets and Fuel Injection on the Aerodynamics of a Prototype Annular Gas Turbine Combustor Sector
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p. 011505.10.1115/1.4002004
42.
Xiao
,
Y.
,
Wang
,
Z.
,
Lai
,
Z.
,
Chen
,
K.
, and
Song
,
W.
,
2018
, “
Flow Field and Species Concentration Measurements in the Primary Zone of an Aero-Engine Combustion Chamber
,”
Adv. Mech. Eng.
,
10
(
1
), p.
168781401774805
.10.1177/1687814017748052
43.
Xiao
,
Y.
,
Cao
,
Z.
, and
Wang
,
C.
,
2019
, “
The Effect of Dilution Air Jets on Aero-Engine Combustor Performance
,”
Int. J. Turbo Jet Engines
,
36
(
3
), pp.
257
269
.10.1515/tjj-2018-0045
44.
Rathod
,
D. D.
,
Kumbhare
,
S. S.
,
Chaudhuri
,
S.
,
Panda
,
P.
,
Basu
,
S.
, and
Maurya
,
D.
,
2023
, “
Design of an Optically Accessible Single Cup Sector of a Full-Scale Annular Gas Turbine Combustor
,”
AIAA
Paper No. 2023-1062.10.2514/6.2023-1062
45.
Panda
,
P. P.
,
Roa
,
M.
,
Slabaugh
,
C. D.
,
Peltier
,
S.
,
Carter
,
C. D.
,
Laster
,
W. R.
, and
Lucht
,
R. P.
,
2016
, “
High-Repetition-Rate Planar Measurements in the Wake of a Reacting Jet Injected Into a Swirling Vitiated Crossflow
,”
Combust. Flame
,
163
, pp.
241
257
.10.1016/j.combustflame.2015.10.001
46.
Rodrigues
,
N. S.
,
McDonald
,
C. T.
,
Busari
,
O. O.
,
Satija
,
A.
,
North
,
A. J.
,
Laster
,
W. R.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2021
, “
An Optically Accessible Secondary Combustion Zone for the Transverse Injection of Reacting Jets Into a High-Speed, Vitiated Crossflow Within a Staged, Gas Turbine Model Combustor
,”
Meas. Sci. Technol.
,
32
(
2
), p.
024007
.10.1088/1361-6501/abbd57
47.
Raffel
,
M.
,
Willert
,
C. E.
, Scarano, F., Kähler, C. J.,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
, “
Particle Image Velocimetry: A Practical Guide
,” Springer eBooks, 3rd ed., Springer, Cham.10.1007/978-3-319-68852-7
48.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1990
, “
Optimization of Particle Image Velocimeters. I. Double Pulsed Systems
,”
Meas. Sci. Technol.
,
1
(
11
), pp.
1202
1215
.10.1088/0957-0233/1/11/013
49.
Chigier
,
N. A.
, and
Chervinsky
,
A.
,
1967
, “
Experimental Investigation of Swirling Vortex Motion in Jets
,”
ASME J. Appl. Mech.
,
34
(
2
), pp.
443
451
.10.1115/1.3607703
You do not currently have access to this content.