Abstract

In the current energy scenario, it is necessary to reduce fossil fuel consumption to achieve the far-sighted and stringent decarbonization goals. To date, heat is mainly produced through fossil fuels. Alternatively, electrically driven heat pumps can exploit renewable power to recover environmental and waste heat, offering energy efficient and environmentally friendly heating and cooling for applications ranging from domestic and commercial buildings to process industries. For this reason, they are expected to play a primary role in complementing or displacing natural gas boilers in the residential and industrial sectors in the near future. Centrifugal compressors are already used as prime movers of the working fluid in heat pumps, thanks to their industrial replicability, compact size, affordable costs, and good performance in terms of efficiency and low noise. However, they are subject to instabilities such as surge and stall like any other dynamic compressor and these phenomena develop quite differently than in classic open-loop systems such as gas turbines. In fact, such peculiarity is mainly due to the closed-loop configuration with real gases in two-phase conditions, occurring in typical heat pump cycles. In addition, heat exchangers also contribute to make these phenomena different from what is commonly studied. Compressor surge in closed-loop heat pump systems has received lower attention than other applications by the engineering community, lacking dedicated experimental characterization, and clear exposition of the phenomenon. The aim of this paper is to experimentally investigate the behavior of a centrifugal compressor installed into an innovative close loop heat pump system under stable and unstable conditions from both vibrational and fluid-dynamic points of view. The impact of the main process parameters on the evolution of the instability is shown, highlighting how surge cycles change by varying system operating conditions. The energy contents of surge cycles and pressure fluctuations are highlighted, using data postprocessing techniques such as fast Fourier transform and phase locked average. The vibro-acoustic analysis enrich the comprehension of the phenomena. The experimental results shown in this paper can be a basis for the future development of validated mathematical models of closed-loop heat pumps systems equipped with dynamic compressors operating under stable and unstable operating conditions.

References

1.
Ritchie
,
H.
,
Roser
,
M.
, and
Rosado
,
P.
,
2020
, “
Energy
,” Our World in Data, accessed Sept. 6, 2022, https://ourworldindata.org/energy
2.
MacNaughton
,
P.
,
Cao
,
X.
,
Buonocore
,
J.
,
Cedeno-Laurent
,
J.
,
Bernstein
,
A.
, and
Allen
,
J.
,
2018
, “
Energy Savings, Emission Reductions, and Health Co-Benefits of the Green Building Movement
,”
J. Exposure Sci. Environ. Epidemiol.
,
28
, pp.
307
318
.10.1038/s41370-017-0014-9
3.
European Commission
,
2016
, “
European Commission, an EU Strategy on Heating and Cooling
,” European Commission, Brussels, Belgium, accessed Oct. 6, 2023, https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf
4.
Chua
,
K. J.
,
Chou
,
S. K.
, and
Yang
,
W. M.
,
2010
, “
Advances in Heat Pump Systems: A Review
,”
Appl. Energy
,
87
(
12
), pp.
3611
3624
.10.1016/j.apenergy.2010.06.014
5.
Laue
,
H.
,
2006
, “
Heat Pumps
,”
Landolt-Börnstein—Group VIII Advanced Materials and Technologies, Renewable Energy
, Bonn, Germany, pp.
605
626
.
6.
Arpagaus
,
C.
,
Bless
,
F.
,
Uhlmann
,
M.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2018
, “
High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials
,”
Energy
,
152
, pp.
985
1010
.10.1016/j.energy.2018.03.166
7.
Reboli
,
T.
,
Ferrando
,
M.
,
Mantelli
,
L.
,
Gini
,
L.
,
Sorce
,
A.
,
Garcia
,
J.
, and
Guedez
,
R.
,
2022
, “
Gas Turbine Combined Cycle Range Enhancer—Part 1: Cyber-Physical Setup
,”
ASME
Paper No. GT2022-82494.10.1115/GT2022-82494
8.
Reboli
,
T.
,
Ferrando
,
M.
,
Gini
,
L.
,
Mantelli
,
L.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2022
, “
Gas Turbine Combined Cycle Range Enhancer—Part 2: Performance Demonstration
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121013
.10.1115/1.4055495
9.
Rattazzi
,
D.
,
Rossi
,
I.
,
Magistri
,
L.
, and
Erich
,
S. J. F.
,
2019
, “
Control Strategies for Solar Façade Panels Coupled With a Heat Pump and Interacting With a District Heating Network
,”
E3S Web Conf.
,
113
, p.
03014
.10.1051/e3sconf/201911303014
10.
Beccali
,
M.
,
Bonomolo
,
M.
,
Martorana
,
F.
,
Catrini
,
P.
, and
Buscemi
,
A.
,
2022
, “
Electrical Hybrid Heat Pumps Assisted by Natural Gas Boilers: A Review
,”
Appl. Energy
,
322
, p.
119466
.10.1016/j.apenergy.2022.119466
11.
Omer
,
A. M.
,
2008
, “
Ground-Source Heat Pumps Systems and Applications
,”
Renewable Sustainable Energy Rev.
,
12
(
2
), pp.
344
371
.10.1016/j.rser.2006.10.003
12.
Barberis
,
S.
,
Rivarolo
,
M.
,
Bellotti
,
D.
, and
Magistri
,
L.
,
2022
, “
Heat Pump Integration in a Real Poly-Generative Energy District: A Techno-Economic Analysis
,”
Energy Convers. Manage.: X
,
15
, p.
100238
.10.1016/j.ecmx.2022.100238
13.
Niccolini
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2020
, “
Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121002
.10.1115/1.4048910
14.
Niccolini
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2021
, “
Incipient Surge Detection in Large Volume Energy Systems Based on Wigner-Ville Distribution Evaluated on Vibration Signals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071014
.10.1115/1.4049855
15.
Marelli
,
S.
,
Misley
,
A.
, and
Ferrando
,
M.
,
2020
, “
Experimental Investigation in Turbocharger Compressors During Surge Operation
,”
ASME
Paper No. GT2020-15174.10.1115/GT2020-15174
16.
Kim
,
H. R.
, and
Song
,
S. J.
,
2011
, “
Modeling of Surge Characteristics in Turbo Heat Pumps
,”
ASME J. Turbomach.
,
133
(
4
), p.
041015
.10.1115/1.4002993
17.
Kim
,
H. R.
,
Kim
,
K. Y.
,
Jeong
,
J.
, and
Song
,
S. J.
,
2010
, “
An Analysis of Heat Transfer Effects on Surge Characteristics in Turbo Heat Pumps
,” International Compressor Engineering Conference,
Purdue University
,
West Lafayette, IN
, July 12–15, Paper No.
1521
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=3034&context=icec
18.
Peterson
,
K. W.
,
2018
, “
Avoiding Centrifugal Chiller Surge
,”
ASHRAE J.
,
11
, pp.
60
66
.https://p2sinc.com/uploads/2018-11-Engineers-Notebook_Peterson_Avoiding-Centrifugal-Chiller-Surge.pdf
19.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
20.
Song
,
J.
,
Park
,
J. C.
,
Kim
,
K. Y.
,
Jeong
,
J.
, and
Song
,
S. J.
,
2014
, “
Surge Onset in Turbo Heat Pumps
,”
ASME J. Turbomach.
,
136
(
8
), p.
081001
.10.1115/1.4026145
21.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME
Paper No. GT2016-57168.10.1115/GT2016-57168
22.
Gysling
,
D. L.
,
Dugundji
,
J.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
,
1991
, “
Dynamic Control of Centrifugal Compressor Surge Using Tailored Structures
,”
ASME J. Turbomach.
,
113
(
4
), pp.
710
722
.10.1115/1.2929138
23.
Silvestri
,
P.
,
Reggio
,
F.
,
Du Haut Champ
,
C. A. N. M.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2022
, “
Compressor Surge Precursors for a Turbocharger Coupled to a Pressure Vessel
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111014
.10.1115/1.4055479
24.
Reggio
,
F.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2022
, “
Operation Extension in Gas Turbine-Based Advanced Cycles With a Surge Prevention Tool
,”
Meccanica
,
57
(
8
), pp.
2117
2130
.10.1007/s11012-022-01540-6
25.
Mondejár
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans-1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)): Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
26.
Ferrando
,
M.
,
Reboli
,
T.
,
Purushothaman
,
S.
,
Traverso
,
A.
, and
Halbe
,
C.
,
2022
, “
A New Experimental Test Rig for Performance Analysis of Radial Compressors Inside Innovative Heat Pumps
,”
XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
, Pisa, Italy, Sept. 28–30, p.
012003
.10.1088/1742-6596/2511/1/012003
27.
National Instruments
, 2017, “
CompactRIO Controllers CONTENTS
,” National Instruments, Austin, TX, accessed Dec. 29, 2022, https://www.ni.com/pdf/product-flyers/compactrio-controller.pdf
28.
Verein Deutscher Ingenieure 2048
,
2000
, “
Uncertainties of Measurement During Acceptance Tests on Energy-Conversion and Power Plants Fundamentals
,” Germany.
You do not currently have access to this content.