Abstract

The development of predictive combustion models is more and more strategic in the design definition of gas turbine (GT) combustor. The thickened flame model (TFM), despite its high computational cost, is one of the most accurate approach available in literature since it can naturally take into account the nonequilibrium effects into the flame brush (i.e., strain and heat losses) as well as preferential diffusion when hydrogen is employed. Conversely, the original formulation of this combustion model needs several adjustments to accommodate the properties of the mixture when different streams of fuels and/or oxidizers are present in the system. The present work represents a first step in the extension of this combustion model to handle multiple streams of fuels and oxidizers. More specifically, an industrial burner fed with two different fuel streams and air as oxidizer is considered. The pilot fuel line is fed with microhydrogen injections with the aim to enhance the lean blow-out margin, while the main one is with pure methane. Dedicated tests are performed at the Technology for High Temperature laboratory (University of Florence) to retrieve the main information characterizing the burner (emissions, temperature, and pressure pulsations) as well as OH* chemiluminescence for the flame shape and position at the same operating conditions. The comparison between the numerical results and the experimental data will provide highlights about the ability of the extended-TFM to capture the main features of the flame stabilization mechanisms.

References

1.
Mira
,
D.
,
Pérez-Sánchez
,
E. J.
,
Borrell
,
R.
, and
Houzeaux
,
G.
,
2023
, “
HPC-Enabling Technologies for High-Fidelity Combustion Simulations
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
5091
5125
.10.1016/j.proci.2022.07.222
2.
Pérez Arroyo
,
C.
,
Dombard
,
J.
,
Duchaine
,
F.
,
Gicquel
,
L.
,
Martin
,
B.
,
Odier
,
N.
, and
Staffelbach
,
G.
,
2021
, “
Towards the Large-Eddy Simulation of a Full Engine: Integration of a 360 Azimuthal Degrees Fan, Compressor and Combustion Chamber. Part I: Methodology and Initialization
,”
J. Global Power Propul. Soc.
, pp.
1
16
.10.33737/jgpps/133116
3.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
4.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.10.1016/j.combustflame.2011.04.008
5.
Agostinelli
,
P. W.
,
Laera
,
D.
,
Chterev
,
I.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2022
, “
On the Impact of H2-Enrichment on Flame Structure and Combustion Dynamics of a Lean Partially-Premixed Turbulent Swirling Flame
,”
Combust. Flame
,
241
, p.
112120
.10.1016/j.combustflame.2022.112120
6.
Laera
,
D.
,
Agostinelli
,
P. W.
,
Selle
,
L.
,
Cazères
,
Q.
,
Oztarlik
,
G.
,
Schuller
,
T.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Stabilization Mechanisms of CH4 Premixed Swirled Flame Enriched With a Non-Premixed Hydrogen Injection
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6355
6363
.10.1016/j.proci.2020.06.378
7.
Riber
,
E.
,
Cuenot
,
B.
, and
Poinsot
,
T.
,
2019
, “
Introducing Chemical Kinetics Into Large Eddy Simulation of Turbulent Reacting Flows
,”
Comput. Aided Chem. Eng.
,
45
, pp.
899
936
.10.1016/B978-0-444-64087-1.00019-X
8.
Castellani
,
S.
,
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Boxx
,
I.
, and
Andreini
,
A.
,
2023
, “
High-Fidelity H2–CH4 Jet in Crossflow Modelling With a Flame Index-Controlled Artificially Thickened Flame Model
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35291
35304
.10.1016/j.ijhydene.2023.05.210
9.
Cuenot
,
B.
,
Shum-Kivan
,
F.
, and
Blanchard
,
S.
,
2021
, “
The Thickened Flame Approach for Non-Premixed Combustion: Principles and Implications for Turbulent Combustion Modeling
,”
Combust. Flame
,
239
, p.
111702
.10.1016/j.combustflame.2021.111702
10.
Aniello
,
A.
,
Laera
,
D.
,
Marragou
,
S.
,
Magnes
,
H.
,
Selle
,
L.
,
Schuller
,
T.
, and
Poinsot
,
T.
,
2023
, “
Experimental and Numerical Investigation of Two Flame Stabilization Regimes Observed in a Dual Swirl H2-Air Coaxial Injector
,”
Combust. Flame
,
249
, p.
112595
.10.1016/j.combustflame.2022.112595
11.
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Castellani
,
S.
,
Nassini
,
P. C.
,
Andreini
,
A.
, and
Boxx
,
I.
,
2023
, “
Partially Premixed Hydrogen-Methane Flame Simulations at Relevant Gas Turbine Conditions With a Thickened Flame Model Enhancement
,”
ASME
Paper No. GT2023-102427.10.1115/GT2023-102427
12.
Mocquard
,
C.
,
Laera
,
D.
,
Dombard
,
J.
, and
Poinsot
,
T.
,
2023
, “
A Two-Step Chemical Scheme for Auto-Igniting and Propagating Kerosene Flames at Reheat Conditions
,”
Combust. Flame
,
248
, p.
112558
.10.1016/j.combustflame.2022.112558
13.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
14.
University of California at San Diego, 2024, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism Web Page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, San Diego, CA, accessed Sept. 23, 2024, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
15.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Sept. 23, 2024, https://cantera.org/
16.
Meloni
,
R.
,
Andreini
,
A.
, and
Nassini
,
P. C.
,
2022
, “
A Novel Large-Eddy Simulation-Based Process for NOx Emission Assessment in a Premixed Swirl Stabilized Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011010
.10.1115/1.4052027
17.
Romano
,
S.
,
Meloni
,
R.
,
Riccio
,
G.
,
Nassini
,
P. C.
, and
Andreini
,
A.
,
2021
, “
Modeling of Natural Gas Composition Effect on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031018
.10.1115/1.4049819
18.
Meloni
,
R.
,
Gori
,
S.
,
Andreini
,
A.
, and
Nassini
,
P. C.
,
2022
, “
CO Emission Modeling in a Heavy Duty Annular Combustor Operating With Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011011
.10.1115/1.4052028
19.
Rochette
,
B.
,
Collin-Bastiani
,
F.
,
Gicquel
,
L.
,
Vermorel
,
O.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2018
, “
Influence of Chemical Schemes, Numerical Method and Dynamic Turbulent Combustion Modeling on LES of Premixed Turbulent Flames
,”
Combust. Flame
,
191
, pp.
417
430
.10.1016/j.combustflame.2018.01.016
20.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul., Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
21.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.10.1016/j.combustflame.2008.04.013
22.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large Eddy Simulations of Turbulent Flows
,”
New J. Phys.
,
6
, p.
35
.10.1088/1367-2630/6/1/035
You do not currently have access to this content.