Abstract

In this study, the flame dynamics of lean premixed hydrogen jet flames are experimentally investigated. Acoustic and optical measurement devices are used to capture the response of a bundle of jet flames to acoustic forcing. Using helium as a fuel surrogate, we simulate the change in acoustic properties in the burner during the determination of cold burner transfer matrix (BTM) measurements in order to avoid dangerous experiments. We investigate the influence of the equivalence ratio and the addition of methane as well as the interaction of the individual flames to evaluate the scalability of the results to systems with more flames. It is shown that the changes in the dynamic flame response can primarily be explained by the flame length, which changes both with the methane share and with the equivalence ratio. It can be observed that with small changes in the equivalence ratio, the flame length and the flame transfer function (FTF) change in the same way as with a small change in the gas composition. To assess the scalability of these results, we deactivate some of the jet flames and analyze how the overall response to acoustic forcing changes. We find that the FTF phase is not affected by the number of active flames. Analyzing the respective gain values, significantly stronger responses are measured for a few flames, but only small difference can be measured above a certain number of neighboring flames so that the lab scale results can also be expected to be valid for industrial configurations with a high number of flames.

References

1.
O'Connor
,
J.
,
Hemchandra
,
S.
, and
Lieuwen
,
T.
,
2016
, “
7—Combustion Instabilities in Lean Premixed Systems
,”
Lean Combustion
, 2nd ed.,
D.
Dunn-Rankin
and
P.
Therkelsen
, eds.,
Academic Press
,
Boston
, MA, pp.
231
259
.
2.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
199
228
.10.1260/175682709788707431
3.
Huber
,
A.
, and
Polifke
,
W.
,
2009
, “
Dynamics of Practical Premixed Flames, Part II: Identification and Interpretation of CFD Data
,”
Int. J. Spray Combust. Dyn.
,
1
(
2
), pp.
229
249
.10.1260/175682709788707440
4.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2011
, “
Modeling of Premixed Swirling Flames Transfer Functions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2967
2974
.10.1016/j.proci.2010.06.059
5.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
6.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
7.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011506
.10.1115/1.4000606
8.
von Saldern
,
J. G. R.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2021
, “
Analysis of Thermoacoustic Modes in Can-Annular Combustors Using Effective Bloch-Type Boundary Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071019
.10.1115/1.4049162
9.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
10.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
11.
Ćosic
,
B.
,
Wassmer
,
D.
,
Kluß
,
D.
,
Jaeschke
,
A.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2022
, “
Experimental and Numerical Advancement of the MGT Combustor Towards Higher Hydrogen Capabilities
,”
ASME
Paper No. GT2022-82110.10.1115/GT2022-82110
12.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
13.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p. 071503.10.1115/1.4029119
14.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
15.
Æsøy
,
E.
,
Indlekofer
,
T.
,
Bothien
,
M. R.
, and
Dawson
,
J. R.
,
2023
, “
The Effect of Hydrogen on Nonlinear Flame Saturation
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111019
.10.1115/1.4063316
16.
Zur Nedden
,
P. M.
,
Eck
,
M. E. G.
,
Lückoff
,
F.
,
Panek
,
L.
,
Orchini
,
A.
, and
Paschereit
,
C. O.
,
2023
, “
Flame Transfer Function and Emissions of a Piloted Single Jet Burner: Influence of Hydrogen Content
,”
ASME
Paper No. GT2023-103032.10.1115/GT2023-103032
17.
Beuth
,
J. P.
,
Reumschüssel
,
J. M.
,
von Saldern
,
J. G. R.
,
Wassmer
,
D.
,
Ćosić
,
B.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2024
, “
Thermoacoustic Characterization of a Premixed Multi Jet Burner for Hydrogen and Natural Gas Combustion
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041007
.10.1115/1.4063692
18.
Lee
,
T.
, and
Kim
,
K. T.
,
2020
, “
Combustion Dynamics of Lean Fully-Premixed Hydrogen-Air Flames in a Mesoscale Multinozzle Array
,”
Combust. Flame
,
218
, pp.
234
246
.10.1016/j.combustflame.2020.04.024
19.
Jaeschke
,
A.
,
Ćosić
,
B.
,
Wassmer
,
D.
, and
Paschereit
,
C. O.
,
2023
, “
Experimental Investigation of a Multi Tube Burner for Premixed Hydrogen and Natural Gas Low Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121010
.10.1115/1.4063378
20.
Kornilov
,
V. N.
,
Rook
,
R.
,
ten Thije Boonkkamp
,
J. H.
, and
de Goey
,
L. P.
,
2009
, “
Experimental and Numerical Investigation of the Acoustic Response of Multi-Slit Bunsen Burners
,”
Combust. Flame
,
156
(
10
), pp.
1957
1970
.10.1016/j.combustflame.2009.07.017
21.
Casel
,
M.
, and
Ghani
,
A.
,
2023
, “
Analysis of the Flame Dynamics in Methane/Hydrogen Fuel Blends at Elevated Pressures
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4631
4640
.10.1016/j.proci.2022.07.211
22.
Æsøy
,
E.
,
Indlekofer
,
T.
,
Gant
,
F.
,
Cuquel
,
A.
,
Bothien
,
M. R.
, and
Dawson
,
J. R.
,
2022
, “
The Effect of Hydrogen Enrichment, Flame-Flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
,”
Combust. Flame
,
242
, p.
112176
.10.1016/j.combustflame.2022.112176
23.
Tyagi
,
A.
,
Boxx
,
I.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2019
, “
Statistics and Topology of Local Flame–Flame Interactions in Turbulent Flames
,”
Combust. Flame
,
203
, pp.
92
104
.10.1016/j.combustflame.2019.02.006
24.
Rajendram Soundararajan
,
P.
,
Durox
,
D.
,
Vignat
,
G.
,
Renaud
,
A.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2022
, “
Comparison of Flame Describing Functions Measured in Single and Multiple Injector Configurations
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111023
.10.1115/1.4055451
25.
Blondé
,
A.
,
Schuermans
,
B.
,
Pandey
,
K.
, and
Noiray
,
N.
,
2023
, “
Effect of Hydrogen Enrichment on Transfer Matrices of Fully and Technically Premixed Swirled Flames
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121009
.10.1115/1.4063415
26.
Zur Nedden, P. M., Paschereit, C. O., and Orchini, A.,
2023
, “
Investigating the Influence of Hydrogen-Rich Fuel Mixtures on the Assessment of the Flame Transfer Function
,” Symposium on Thermoacoustics in Combustion: Industry Meets Academia (SoTiC), Zurich, Switzerland, Sept. 11–14.
27.
Bechert
,
D. W.
,
1980
, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
,
70
(
3
), pp.
389
405
.10.1016/0022-460X(80)90307-7
28.
Nyquist
,
H.
,
1924
, “
Certain Factors Affecting Telegraph Speed
,”
Trans. Am. Inst. Electr. Eng.
,
XLIII
, pp.
412
422
.10.1109/T-AIEE.1924.5060996
29.
Jang
,
S.-H.
, and
Ih
,
J.-G.
,
1998
, “
On the Multiple Microphone Method for Measuring In-Duct Acoustic Properties in the Presence of Mean Flow
,”
J. Acoust. Soc. Am.
,
103
(
3
), pp.
1520
1526
.10.1121/1.421289
30.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
,
École Polytechnique Fédérale de Lausanne (EPFL)
, Lausanne, Switzerland.https://core.ac.uk/download/pdf/147900077.pdf
31.
Schuermans
,
B. B. H.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132.10.1115/99-GT-132
32.
Alemela
,
P. R.
,
Fanaca
,
D.
,
Ettner
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2008
, “
Flame Transfer Matrices of a Premixed Flame and a Global Check With Modelling and Experiments
,”
ASME
Paper No. GT2008-50111.10.1115/GT2008-50111
33.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
081501
.10.1115/1.3124663
34.
Steinbacher
,
T.
,
Albayrak
,
A.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Consequences of Flame Geometry for the Acoustic Response of Premixed Flames
,”
Combust. Flame
,
199
, pp.
411
428
.10.1016/j.combustflame.2018.10.039
35.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2018
, “
Methods for the Calculation of Thermoacoustic Stability Boundaries and Monte Carlo-Free Uncertainty Quantification
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061501
.10.1115/1.4038156
36.
Polifke
,
W.
, and
Lawn
,
C.
,
2007
, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
,
151
(
3
), pp.
437
451
.10.1016/j.combustflame.2007.07.005
37.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of Premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Combust. Sci.
,
79
, p.
100845
.10.1016/j.pecs.2020.100845
You do not currently have access to this content.