Abstract

Supercritical carbon dioxide (sCO2) power blocks for concentrating solar power (CSP) with novel metal matrix solar receivers have the potential to reduce operating expenses while improving overall system efficiencies. These concentrated solar receivers integrated with a metal matrix-based phase change material (PCM) thermal storage medium provide the compounding effect of an efficient heat exchanger while also integrating thermal storage within the receiver. Detailed numerical modeling of such devices with enthalpy–porosity-based formulation for phase change and turbulent convective heat transfer for the sCO2 microchannels is described in the current work. With sCO2 power blocks operating at temperatures and pressures beyond 800 °C and 200 bar, different high-temperature PCMs are studied. Steady-state charging and discharging cycles in addition to transient charging are simulated to analyze the thermal performance of the device. Energy storage density of the PCM is evaluated by tracking the movement of the melt-pool interface along the streamwise direction in a highly corrugated wavy microchannel. A detailed scaling analysis carried out to estimate the order of magnitude of the heat transfer coefficients is found to agree well with the numerical predictions. The outcomes from the current work can be utilized for sizing and detailed design of integrated solar receivers for high temperature sCO2 power block applications.

References

1.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Power Cycles for Application to CSP Solar Tower Plants
,”
Energy Procedia
,
105
, pp.
1116
1122
.10.1016/j.egypro.2017.03.475
2.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.10.1016/j.apenergy.2013.06.020
3.
Gauché
,
P.
,
Brent
,
A. C.
, and
von Backström
,
T. W.
,
2014
, “
Concentrating Solar Power: Improving Electricity Cost and Security of Supply, and Other Economic Benefits
,”
Dev. South Afr.
,
31
(
5
), pp.
692
710
.10.1080/0376835X.2014.930791
4.
Crespi
,
F.
,
Sánchez
,
D.
,
Sánchez
,
T.
, and
Martínez
,
G. S.
,
2018
, “
Integral Techno-Economic Analysis of Supercritical Carbon Dioxide Cycles for Concentrated Solar Power
,”
ASME
Paper No. GT2018-77106.10.1115/GT2018-77106
5.
Sioshansi
,
R.
, and
Denholm
,
P.
,
2010
, “
The Value of Concentrating Solar Power and Thermal Energy Storage
,”
IEEE Trans. Sustainable Energy
,
1
(
3
), pp.
173
183
.10.1109/TSTE.2010.2052078
6.
Freeman
,
J.
,
Guarracino
,
I.
,
Kalogirou
,
S. A.
, and
Markides
,
C. N.
,
2017
, “
A Small-Scale Solar Organic Rankine Cycle Combined Heat and Power System With Integrated Thermal Energy Storage
,”
Appl. Therm. Eng.
,
127
, pp.
1543
1554
.10.1016/j.applthermaleng.2017.07.163
7.
Cárdenas
,
B.
, and
León
,
N.
,
2013
, “
High Temperature Latent Heat Thermal Energy Storage: Phase Change Materials, Design Considerations and Performance Enhancement Techniques
,”
Renewable Sustainable Energy Rev.
,
27
, pp.
724
737
.10.1016/j.rser.2013.07.028
8.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.10.1016/j.rser.2009.11.011
9.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,” NREL, Golden, CO, Report No.
NREL/TP-5500-67464
.10.2172/1338899
10.
Merchán
,
R. P.
,
Santos
,
M. J.
,
Medina
,
A.
, and
Calvo Hernández
,
A.
,
2022
, “
High Temperature Central Tower Plants for Concentrated Solar Power: 2021 Overview
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111828
.10.1016/j.rser.2021.111828
11.
Liu
,
M.
,
Riahi
,
S.
,
Jacob
,
R.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2020
, “
Design of Sensible and Latent Heat Thermal Energy Storage Systems for Concentrated Solar Power Plants: Thermal Performance Analysis
,”
Renewable Energy
,
151
, pp.
1286
1297
.10.1016/j.renene.2019.11.115
12.
Montes
,
M. J.
,
Guédez
,
R.
,
D'Souza
,
D.
,
Linares
,
J. I.
,
González-Aguilar
,
J.
, and
Romero
,
M.
,
2023
, “
Proposal of a New Design of Central Solar Receiver for Pressurised Gases and Supercritical Fluids
,”
Int. J. Therm. Sci.
,
194
, p.
108586
.10.1016/j.ijthermalsci.2023.108586
13.
Trevisan
,
S.
,
Guédez
,
R.
, and
Laumert
,
B.
,
2019
, “
Supercritical CO2 Brayton Power Cycle for CSP With Packed Bed TES Integration and Cost Benchmark Evaluation
,”
ASME
Paper No. POWER2019-1903.10.1115/POWER2019-1903
14.
Belusko
,
M.
,
Tay
,
N. H. S.
,
Liu
,
M.
, and
Bruno
,
F.
,
2016
, “
Effective Tube-in-Tank PCM Thermal Storage for CSP Applications, Part 1: Impact of Tube Configuration on Discharging Effectiveness
,”
Sol. Energy
,
139
, pp.
733
743
.10.1016/j.solener.2015.09.042
15.
Bashir
,
M. A.
, and
Giovannelli
,
A.
,
2019
, “
Design Optimization of the Phase Change Material Integrated Solar Receiver: A Numerical Parametric Study
,”
Appl. Therm. Eng.
,
160
, p.
114008
.10.1016/j.applthermaleng.2019.114008
16.
He
,
Y. L.
,
Zheng
,
Z. J.
,
Du
,
B. C.
,
Wang
,
K.
, and
Qiu
,
Y.
,
2016
, “
Experimental Investigation on Turbulent Heat Transfer Characteristics of Molten Salt in a Shell-and-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
108
, pp.
1206
1213
.10.1016/j.applthermaleng.2016.08.023
17.
Wang
,
W. Q.
,
Qiu
,
Y.
,
He
,
Y. L.
, and
Shi
,
H. Y.
,
2019
, “
Experimental Study on the Heat Transfer Performance of a Molten-Salt Printed Circuit Heat Exchanger With Airfoil Fins for Concentrating Solar Power
,”
Int. J. Heat Mass Transfer
,
135
, pp.
837
846
.10.1016/j.ijheatmasstransfer.2019.02.012
18.
Chen
,
Y. S.
,
Tian
,
J.
,
Zhu
,
H. H.
,
Xue
,
J. Y.
,
Tang
,
Z. F.
,
Fu
,
Y.
, and
Wang
,
N. X.
,
2019
, “
Thermal Sizing Design and Experimental Evaluation of Molten Salt-to-Air Heat Exchanger
,”
Ann. Nucl. Energy
,
132
, pp.
504
511
.10.1016/j.anucene.2019.06.033
19.
Tano
,
I. N.
,
Rasouli
,
E.
,
Ziev
,
T.
,
Wu
,
Z.
,
Lamprinakos
,
N.
,
Seo
,
J.
,
Schulze Balhorn
,
L.
,
Vaishnav
,
P.
,
Rollett
,
A.
, and
Narayanan
,
V.
,
2022
, “
An Additively-Manufactured Molten Salt-to-Supercritical Carbon Di-Oxide Primary Heat Exchanger for Solar Thermal Power Generation—Design and Techno-Economic Performance
,”
Sol. Energy
,
234
, pp.
152
169
.10.1016/j.solener.2022.01.056
20.
Yang
,
J.
,
Ma
,
Y.
, and
Wang
,
W.
,
2023
, “
An Analytical Method for Quickly Evaluating the Performances of Refractory Alloys in sCO2 Brayton Cycle Applications
,”
Energy
,
283
, p.
129041
.10.1016/j.energy.2023.129041
21.
Yang
,
Y.
,
Lu
,
Y.
,
Wei
,
H.
,
Wu
,
Y.
, and
Gao
,
Q.
,
2023
, “
Numerical Study of Thermal-Hydraulic Performance of sCO2-Molten Salt Printed Circuit Heat Exchanger With Discontinuous Fins Channel
,”
Numer. Heat Transfer A: Appl.
,
84
(
3
), pp.
198
218
.10.1080/10407782.2022.2105113
22.
Kruizenga
,
A.
,
Anderson
,
M.
,
Fatima
,
R.
,
Corradini
,
M.
,
Towne
,
A.
, and
Ranjan
,
D.
,
2011
, “
Heat Transfer of Supercritical Carbon Dioxide in Printed Circuit Heat Exchanger Geometries
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031002
.10.1115/1.4004252
23.
Lee
,
S.-M.
, and
Kim
,
K.-Y.
,
2013
, “
Comparative Study on Performance of a Zigzag Printed Circuit Heat Exchanger With Various Channel Shapes and Configurations
,”
Heat Mass Transfer
,
49
(
7
), pp.
1021
1028
.10.1007/s00231-013-1149-4
24.
Cui
,
X.
,
Guo
,
J.
,
Huai
,
X.
,
Cheng
,
K.
,
Zhang
,
H.
, and
Xiang
,
M.
,
2018
, “
Numerical Study on Novel Airfoil Fins for Printed Circuit Heat Exchanger Using Supercritical CO2
,”
Int. J. Heat Mass Transfer
,
121
, pp.
354
366
.10.1016/j.ijheatmasstransfer.2018.01.015
25.
Pritzkow
,
W. E. C.
,
1991
, “
Pressure Loaded Volumetric Ceramic Receiver
,”
Sol. Energy Mater.
,
24
(
1–4
), pp.
498
507
.10.1016/0165-1633(91)90086-Z
26.
Ávila-Marín
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.10.1016/j.solener.2011.02.002
27.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
,
2001
, “
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1,200 °C
,”
ASME J. Sol. Energy Eng.
,
123
(
1
), pp.
10
17
.10.1115/1.1345844
28.
Hoque
,
S. J.
, and
Kumar
,
P.
,
2021
, “
Analysis of a Dual Recuperated Dual Expansion Supercritical CO2 Cycle for Waste Heat Recovery Applications
,”
Trans. Indian Natl. Acad. Eng.
,
6
(
2
), pp.
439
459
.10.1007/s41403-021-00211-4
29.
Hoque
,
S. J.
,
Lanjewar
,
S.
, and
Kumar
,
P.
,
2024
, “
Effect of Parasitic Losses on the Design Optimization of Inward Flow Radial Supercritical CO2 Turbines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
238
(
3
), pp.
443
456
.10.1177/09576509231221007
30.
Seshadri
,
L.
,
Patel
,
A.
,
Biradar
,
V.
,
Kumar
,
P.
, and
Gopi
,
P. C.
,
2022
, “
Two Stage Radial Compressor for a Kilowatt Scale Supercritical Carbon Dioxide Power Block: Design Considerations
,”
ASME
Paper No. GT2022-81699.10.1115/GT2022-81699
31.
Ebadi
,
M.
,
Mehrpooya
,
M.
, and
Kani
,
A. H.
,
2021
, “
A Novel Design of Hybrid High-Temperature Solar Receiver and Thermochemical Energy Storage System
,”
Energy Convers. Manage.
,
250
, p.
114911
.10.1016/j.enconman.2021.114911
32.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
33.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(
3
), pp.
297
318
.10.1080/10407788808913615
34.
Shamberger
,
P. J.
, and
Bruno
,
N. M.
,
2020
, “
Review of Metallic Phase Change Materials for High Heat Flux Transient Thermal Management Applications
,”
Appl. Energy
,
258
, p.
113955
.10.1016/j.apenergy.2019.113955
35.
Guerraiche
,
D.
,
Bougriou
,
C.
,
Guerraiche
,
K.
,
Valenzuela
,
L.
, and
Driss
,
Z.
,
2020
, “
Experimental and Numerical Study of a Solar Collector Using Phase Change Material as Heat Storage
,”
J. Energy Storage
,
27
, p.
101133
.10.1016/j.est.2019.101133
36.
Giovannelli
,
A.
,
Bashir
,
M. A.
, and
Archilei
,
E. M.
,
2017
, “
High-Temperature Solar Receiver Integrated With a Short-Term Storage System
,”
Energy Procedia
, 126, pp.
557
564
.10.1016/j.egypro.2017.08.286
37.
Bashir
,
M. A.
,
Giovannelli
,
A.
, and
Ali
,
H. M.
,
2019
, “
Design of High-Temperature Solar Receiver Integrated With Short-Term Thermal Storage for Dish-Micro Gas Turbine Systems
,”
Sol. Energy
,
190
, pp.
156
166
.10.1016/j.solener.2019.07.077
38.
Asako
,
Y.
, and
Faghri
,
M.
,
1987
, “
Finite Volume Solutions for Laminar Flow and Heat Transfer in a Corrugated Duct
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
3
), pp.
627
634
.10.1115/1.3248134
39.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
40.
Shahsavar
,
A.
,
Al-Rashed
,
A. A. A. A.
,
Entezari
,
S.
, and
Sardari
,
P. T.
,
2019
, “
Melting and Solidification Characteristics of a Double-Pipe Latent Heat Storage System With Sinusoidal Wavy Channels Embedded in a Porous Medium
,”
Energy
,
171
, pp.
751
769
.10.1016/j.energy.2019.01.045
41.
Albrecht
,
K. J.
,
Carlson
,
M. D.
, and
Ho
,
C. K.
,
2019
, “
Integration, Control, and Testing of a High-Temperature Particle-to-sCO2 Heat Exchanger
,”
AIP Conf. Proc.
, 2126(1), p.
030001
.10.1063/1.5117513
You do not currently have access to this content.