Abstract

The combustion process of both pure NH3 and a NH3/H2 fuel blends is here analyzed using two kinetics processors, i.e., Chemkin-Pro-and CANTERA: detailed kinetic mechanisms have been tested and compared in terms of laminar flame speed and ignition delay time (IDT) with the aim to identifying the most suitable ones for the evaluation of NOx emissions. The generic swirl burner being used in Cardiff University's Gas Turbine Research Center has been considered as validation test case. In addition, this paper presents an experimental campaign followed by a computational fluid dynamics (CFD) approach for the assessment of NOx emission using axisymmetric Reynolds-Averaged Navier–Stokes (RANS) simulations, leading to a significant reduction of the computational time. Different pressures and mass flow rates are evaluated to understand correlations of NOx formation for pollutants reduction purpose. A direct comparison between experimental and numerical results is carried out in terms of flow field, flame shape, and NOx emissions. Results show that the increase in pressure from 1.1 bar to 2 bar results in reduction of NOx emissions from 2515 ppmv to 885 ppmv, also indicating guidelines for using a simplified RANS analysis, which leads to improved computational efficiency, allowing wide sensitivity and optimization analysis to support the design development of an industrial combustion system.

References

1.
Conti
,
J.
,
Holtberg
,
P.
,
Diefenderfer
,
J.
,
LaRose
,
A.
,
Turnure
,
J. T.
, and
Westfall
,
L.
,
2016
, “
International Energy Outlook 2016 With Projections to 2040
,”
USDOE Energy Information Administration (EIA), Office of Energy Analysis
, Report No. DOE/EIA-0484(2016).
2.
IEA
,
2021
, “
Net Zero by 2050, Paris
,” accessed Nov. 2022, https://www.iea.org/reports/net-zero-by-2050
3.
Pessina
,
V.
,
Berni
,
F.
,
Fontanesi
,
S.
,
Stagni
,
A.
, and
Mehl
,
M.
,
2022
, “
Laminar Flame Speed Correlations of Ammonia/Hydrogen Mixtures at High Pressure and Temperature for Combustion Modeling Applications
,”
Int. J. Hydrogen Energy
,
47
(
61
), pp.
25780
25794
.10.1016/j.ijhydene.2022.06.007
4.
Ekins
,
P.
,
Drummond
,
P.
,
Scamman
,
D.
,
Paroussos
,
L.
, and
Keppo
,
I.
,
2022
, “
The 1.5C Climate and Energy Scenarios: Impacts on Economic Growth
,”
Oxford Open Energy
,
1
(
03
), p.
oiac005
.10.1093/ooenergy/oiac005
5.
Herbinet
,
O.
,
Bartocci
,
P.
, and
Grinberg Dana
,
A.
,
2022
, “
On the Use of Ammonia as a Fuel – A Perspective
,”
Fuel Commun.
,
11
, p.
100064
.10.1016/j.jfueco.2022.100064
6.
Mazzotta
,
L.
,
Di Gruttola
,
F.
,
Palone
,
O.
,
Gagliardi
,
G. G.
, and
Borello
,
D.
,
2022
, “
Analysis of the NOx Emissions Deriving From Hydrogen/Air Combustion in a Swirling Non-Premixed Annular Micro-Combustor
,” ASME Paper No. GT2022-81131.10.1115/GT2022-81131
7.
Pugh
,
D.
,
Valera-Medina
,
A.
,
Bowen
,
P.
,
Giles
,
A.
,
Goktepe
,
B.
,
Runyon
,
J.
,
Morris
,
S.
,
Hewlett
,
S.
, and
Marsh
,
R.
,
2021
, “
Emissions Performance of Staged Premixed and Diffusion Combustor Concepts for an NH3/Air Flame With and Without Reactant Humidification
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051012
.10.1115/1.4049451
8.
Pugh
,
D.
,
Bowen
,
P.
,
Valera-Medina
,
A.
,
Giles
,
A.
,
Runyon
,
J.
, and
Marsh
,
R.
,
2019
, “
Influence of Steam Addition and Elevated Ambient Conditions on NOx Reduction in a Staged Premixed Swirling NH3/H2 Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5401
5409
.10.1016/j.proci.2018.07.091
9.
Cerutti
,
M.
,
Meloni
,
R.
,
Pucci
,
E.
, and
Zucca
,
A.
,
2021
, “
Numerical Investigation of Gas Turbine Burners Operating With Hydrogen and Hydrogen-Ammonia Blends
,”
10th International Gas Turbine Conference
,
Brussel, Belgium
, Oct. 11–15.https://etn.global/wp-content/uploads/2021/10/44.-Baker-Hughes-Egidio-Pucci.pdf
10.
Valera-Medina
,
A.
,
Pugh
,
D.
,
Marsh
,
P.
,
Bulat
,
G.
, and
Bowen
,
P.
,
2017
, “
Preliminary Study on Lean Premixed Combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustors
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24495
24503
.10.1016/j.ijhydene.2017.08.028
11.
Xiao
,
H.
,
Valera-Medina
,
A.
, and
Bowen
,
P. J.
,
2017
, “
Modeling Combustion of Ammonia/Hydrogen Fuel Blends Under Gas Turbine Conditions
,”
Energy Fuels
,
31
(
8
), pp.
8631
8642
.10.1021/acs.energyfuels.7b00709
12.
Li
,
Z.
, and
Li
,
S.
,
2021
, “
Kinetics Modeling of NOx Emissions Characteristics of a NH3/H2 Fueled Gas Turbine Combustor
,”
Int. J. Hydrogen Energy
,
46
(
5
), pp.
4526
4537
.10.1016/j.ijhydene.2020.11.024
13.
Valera-Medina
,
A.
,
Gutesa
,
M.
,
Xiao
,
H.
,
Pugh
,
D.
,
Giles
,
A.
,
Goktepe
,
B.
,
Marsh
,
R.
, and
Bowen
,
P.
,
2019
, “
Premixed Ammonia/Hydrogen Swirl Combustion Under Rich Fuel Conditions for Gas Turbines Operation
,”
Int. J. Hydrogen Energy
,
44
(
16
), pp.
8615
8626
.10.1016/j.ijhydene.2019.02.041
14.
da Rocha
,
R. C.
,
Costa
,
M.
, and
Bai
,
X.-S.
,
2019
, “
Chemical Kinetic Modelling of Ammonia/Hydrogen/Air Ignition, Premixed Flame Propagation and NO Emission
,”
Fuel
,
246
, pp.
24
33
.10.1016/j.fuel.2019.02.102
15.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Meeks
,
E.
, and
Miller
,
J. A.
,
1996
, “
CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics
,”
University of North Texas Libraries, UNT Digital Library
,
Livermore, CA
, accessed Nov. 25, 2022, https://digital.library.unt.edu/ark:/67531/metadc684249
16.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed Nov. 22, 2022, https://www.cantera.org
17.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of ch4-nh3-Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
18.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
19.
Zhang
,
X.
,
Moosakutty
,
S. P.
,
Rajan
,
R. P.
,
Younes
,
M.
, and
Sarathy
,
S. M.
,
2021
, “
Combustion Chemistry of Ammonia/Hydrogen Mixtures: Jet-Stirred Reactor Measurements and Comprehensive Kinetic Modeling
,”
Combust. Flame
,
234
(
12
), p.
111653
.10.1016/j.combustflame.2021.111653
20.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
21.
Gotama
,
G. J.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
,
Kanoshima
,
R.
,
Hayashi
,
M.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2022
, “
Measurement of the Laminar Burning Velocity and Kinetics Study of the Importance of the Hydrogen Recovery Mechanism of Ammonia/Hydrogen/Air Premixed Flames
,”
Combust. Flame
,
236
, p.
111753
.10.1016/j.combustflame.2021.111753
22.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
23.
Song
,
Y.
,
Hashemi
,
H.
,
Christensen
,
J. M.
,
Zou
,
C.
,
Marshall
,
P.
, and
Glarborg
,
P.
,
2016
, “
Ammonia Oxidation at High Pressure and Intermediate Temperatures
,”
Fuel
,
181
, pp.
358
365
.10.1016/j.fuel.2016.04.100
24.
Mei
,
B.
,
Zhang
,
J.
,
Shi
,
X.
,
Xi
,
Z.
, and
Li
,
Y.
,
2021
, “
Enhancement of Ammonia Combustion With Partial Fuel Cracking Strategy: Laminar Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures Up to 10 atm
,”
Combust. Flame
,
231
, p.
111472
.10.1016/j.combustflame.2021.111472
25.
Mendiara
,
T.
, and
Glarborg
,
P.
,
2009
, “
Ammonia Chemistry in Oxy-Fuel Combustion of Methane
,”
Combust. Flame
,
156
(
10
), pp.
1937
1949
.10.1016/j.combustflame.2009.07.006
26.
Tian
,
Z.
,
Li
,
Y.
,
Zhang
,
L.
,
Glarborg
,
P.
, and
Qi
,
F.
,
2009
, “
An Experimental and Kinetic Modeling Study of Premixed NH3/CH4/O2/Ar Flames at Low Pressure
,”
Combust. Flame
,
156
(
7
), pp.
1413
1426
.10.1016/j.combustflame.2009.03.005
27.
University of California San Diego
,
2018
, “
The San Diego Mechanism
,” accessed Nov. 24, 2022, https://chemistry.cerfacs.fr/en/chemical-database/mechanisms-list/the-san-diego-mechanism
28.
Shrestha
,
K. P.
,
Lhuillier
,
C.
,
Barbosa
,
A. A.
,
Brequigny
,
P.
,
Contino
,
F.
,
Mounaïm-Rousselle
,
C.
,
Seidel
,
L.
, and
Mauss
,
F.
,
2021
, “
An Experimental and Modeling Study of Ammonia With Enriched Oxygen Content and Ammonia/Hydrogen Laminar Flame Speed at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2163
2174
.10.1016/j.proci.2020.06.197
29.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2022
, “
GRI-Mech
,” accessed Nov. 22, 2022, http://combustion.berkeley.edu/gri-mech/
30.
Elbaz
,
A. M.
,
Wang
,
S.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2022
, “
Review on the Recent Advances on Ammonia Combustion From the Fundamentals to the Applications
,”
Fuel Commun.
,
10
(
3
), p.
100053
.10.1016/j.jfueco.2022.100053
31.
Zakaznov
,
V.
,
Kursheva
,
L.
, and
Fedina
,
Z.
,
1978
, “
Determination of Normal Flame Velocity and Critical Diameter of Flame Extinction in Ammonia-Air Mixture
,”
Combust. Explos. Shock Waves
,
14
(
6
), pp.
710
713
.10.1007/BF00786097
32.
Pfahl
,
U.
,
Ross
,
M.
,
Shepherd
,
J.
,
Pasamehmetoglu
,
K.
, and
Unal
,
C.
,
2000
, “
Flammability Limits, Ignition Energy, and Flame Speeds in H2-Ch4-NH3-N2O-O2-N2 Mixtures
,”
Combust. Flame
,
123
(
1–2
), pp.
140
158
.10.1016/S0010-2180(00)00152-8
33.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
34.
Han
,
X.
,
Wang
,
Z.
,
He
,
Y.
,
Liu
,
Y.
,
Zhu
,
Y.
, and
Konnov
,
A. A.
,
2020
, “
The Temperature Dependence of the Laminar Burning Velocity and Superadiabatic Flame Temperature Phenomenon for NH3/Air Flames
,”
Combust. Flame
,
217
, pp.
314
320
.10.1016/j.combustflame.2020.04.013
35.
Takizawa
,
K.
,
Takahashi
,
A.
,
Tokuhashi
,
K.
,
Kondo
,
S.
, and
Sekiya
,
A.
,
2008
, “
Burning Velocity Measurements of Nitrogen-Containing Compounds
,”
J. Hazard. Mater.
,
155
(
1–2
), pp.
144
152
.10.1016/j.jhazmat.2007.11.089
36.
Ronney
,
P. D.
,
1988
, “
Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity
,”
Combust. Sci. Technol.
,
59
(
1–3
), pp.
123
141
.10.1080/00102208808947092
37.
Mei
,
B.
,
Zhang
,
X.
,
Ma
,
S.
,
Cui
,
M.
,
Guo
,
H.
,
Cao
,
Z.
, and
Li
,
Y.
,
2019
, “
Experimental and Kinetic Modeling Investigation on the Laminar Flame Propagation of Ammonia Under Oxygen Enrichment and Elevated Pressure Conditions
,”
Combust. Flame
,
210
, pp.
236
246
.10.1016/j.combustflame.2019.08.033
38.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Lamoureux
,
N.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2020
, “
Experimental Investigation on Laminar Burning Velocities of Ammonia/Hydrogen/Air Mixtures at Elevated Temperatures
,”
Fuel
,
263
(
3
), p.
116653
.10.1016/j.fuel.2019.116653
39.
Runyon
,
J.
,
Marsh
,
R.
,
Bowen
,
P.
,
Pugh
,
D.
,
Giles
,
A.
, and
Morris
,
S.
,
2018
, “
Lean Methane Flame Stability in a Premixed Generic Swirl Burner: Isothermal Flow and Atmospheric Combustion Characterization
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
125
140
.10.1016/j.expthermflusci.2017.11.019
40.
ANSYS
,
2021
, Ansys Fluent Theory Guide. Release 2021R2,
ANSYS
,
Canonsburg, PA
.
41.
Reis
,
L.
,
Carvalho
,
J.
,
Nascimento
,
M.
,
Rodrigues
,
L.
,
Dias
,
F.
, and
Sobrinho
,
P.
,
2014
, “
Numerical Modeling of Flow Through an Industrial Burner Orifice
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
201
213
.10.1016/j.applthermaleng.2014.02.036
42.
Durst
,
F.
,
2008
,
Fluid Mechanics - An Introduction to the Theory of Fluid Flows
,
Springer
, Berlin, Germany.
43.
Law
,
C.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge UK
.
44.
Schlup
,
J.
, and
Blanquart
,
G.
,
2018
, “
Validation of a Mixture-Averaged Thermal Diffusion Model for Premixed Lean Hydrogen Flames
,”
Combust. Theory Modell.
,
22
(
2
), pp.
264
290
.10.1080/13647830.2017.1398350
45.
Xiao
,
H.
,
Valera-Medina
,
A.
,
Bowen
,
P.
, and
Dooley
,
S.
,
2017
, “
3D Simulation of Ammonia Combustion in a Lean Premixed Swirl Burner
,”
Energy Proc.
,
142
, pp.
1294
1299
.10.1016/j.egypro.2017.12.504
46.
Magnussen
,
B. F.
,
2005
, “
The Eddy Dissipation Concept: A Bridge Between Science and Technology
,”
ECCOMAS Thematic Conference on Computational Combustion
,
Libson, Portugal
.
47.
Golovitchev
,
V. I.
, and
Chomiak
,
J.
,
2001
, “
Numerical Modeling of High Temperature Air Flameless Combustion
,”
Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification
, Rome, Italy, pp.
27
30
.
48.
Giuntini
,
L.
,
Lamioni
,
R.
,
Linari
,
L.
,
Saccomano
,
P.
,
Mainardi
,
D.
,
Tognotti
,
L.
, and
Galletti
,
C.
,
2022
, “
Decarbonization of a Tissue Paper Plant: Advanced Numerical Simulations to Assess the Replacement of Fossil Fuels With a Biomass-Derived Syngas
,”
Renewable Energy
,
198
, pp.
884
893
.10.1016/j.renene.2022.08.076
49.
Amaduzzi
,
R.
,
Ferrarotti
,
M.
, and
Parente
,
A.
,
2021
, “
Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace
,”
Front. Energy Res.
,
8
, p.
590300
.10.3389/fenrg.2020.590300
50.
Ferrarotti
,
M.
,
Fürst
,
M.
,
Cresci
,
E.
,
de Paepe
,
W.
, and
Parente
,
A.
,
2018
, “
Key Modeling Aspects in the Simulation of a Quasi-Industrial 20 kw Moderate or Intense Low-Oxygen Dilution Combustion Chamber
,”
Energy Fuels
,
32
(
10
), pp.
10228
10241
.10.1021/acs.energyfuels.8b01064
51.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion - Alternative Fuels and Emissions
,
Taylor & Francis Group
,
Boca Raton, FL
.
52.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia, Flourtown, PA
.
53.
Baukal
,
C.
, and
Eleazer
,
P.
,
1998
, “
Quantifying NOx for Industrial Combustion Processes
,”
J. Air Waste Manage. Assoc.
,
48
(
1
), pp.
52
58
.10.1080/10473289.1998.10463664
54.
Mashruk
,
S.
,
Zitouni
,
S. E.
,
Brequigny
,
P.
,
Mounaim-Rousselle
,
C.
, and
Valera-Medina
,
A.
,
2022
, “
Combustion Performances of Premixed Ammonia/Hydrogen/Air Laminar and Swirling Flames for a Wide Range of Equivalence Ratios
,”
Int. J. Hydrogen Energy
,
47
(
97
), pp.
41170
41182
.10.1016/j.ijhydene.2022.09.165
55.
Zhu
,
X.
,
Guiberti
,
T. F.
,
Li
,
R.
, and
Roberts
,
W. L.
,
2022
, “
Numerical Study of Heat Release Rate Markers in Laminar Premixed Ammonia-Methane-Air Flames
,”
Fuel
,
318
, p.
123599
.10.1016/j.fuel.2022.123599
You do not currently have access to this content.